BVVS

Basaveshwar Engineering College, Bagalkote Department of Electronics and Communication Engineering

Vision, Mission Statements and Values

Vision

To achieve excellence in electronics and communication engineering through quality education and research for developing competent professionals.

Mission

- 1. Foster a dynamic teaching and learning process.
- 2. Encourage research through innovation and collaboration.
- 3. Imbibe moral, ethical values and social responsibilities.

Values

The values of the department are

- 1. Work is Worship
- 2. Ethics and Integrity
- 3. Empathy and Compassion
- 4. Indian Ethos
- 5. Mutual Respect

BVVS

Basaveshwar Engineering College, Bagalkote

Department of Electronics and Communication Engineering

SWOC Analysis

S:Strength:

- 1. Infrastructure
 - (i.) ICT enabled classrooms/seminar hall with good ambience.
 - (ii.) Well equipped laboratories to cater curriculum requirements.
 - (iii.) Department library with good number of titles and volumes.
 - (iv.) Scope for academic extension programmes.
- 2. Faculty
 - (i.) 75% of faculty with Ph.D.
 - (ii.) Faculty with minimum of 12 years teaching experience.
 - (iii.) Faculty retention ratio is 100 %.
- 3. Students
 - (i.) Students with academic and competitive bent of mind.
 - (ii.) 75% of the students are placed in reputed industries.
 - (iii.) 10% to 15% of the students are registering for B.E. Honours Degree.

4. Curriculum

- (i.) Research and industry oriented adaptive curriculum.
- (ii.) Curriculum with integrated courses.

5. Alumni

- (i.) Alumni works in reputed organizations across the world.
- (ii.) Alumni interactions with students and faculty to bridge the gap between campus and corporate.

W:Weakness:

- 1. IPR competencies are inadequate.
- 2. Relatively less number of memberships in professional bodies.
- 3. Limited collaborative activities.
- 4. Less number of inter-disciplinary courses and projects.
- 5. Less number of industry supported laboratories/courses.
- 6. Inadequate number of funded projects.
- 7. Less scope for co-curricular and cultural activities.

O:Opportunities:

- 1. Establishment of Distant Learning Center (DLC) using existing resources.
- 2. Participation in collaborative projects/ research work with allied institutions.
- 3. Fostering alumni participation in academics and placement activities.
- 4. Establishment of Skilling Centers for students.
- 5. Faculty exchange programs with academia and industry.
- 6. Organizing conferences.
- 7. Facilitating incubation centers for alumni.
- 8. Scope for academic extension programmes
- 9. Training on computer usage/ programming languages for general public.
- 10. Enhancing consultancy activities.

C:Challenges:

- 1. To incorporate experiential teaching learning process.
- 2. Adapting curriculum to future industry needs.
- 3. Fostering collaboration to enhance research, innovation and entrepreneurship activities.
- 4. Attracting diversified students.
- 5. Strategies to strengthen the placement activities for higher packages and core companies.
- 6. Secure additional research grants and consultancy opportunities.
- 7. Enhance quality publications and file patents.

Programme Outcomes

- a) **Engineering knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- b) **Problem analysis:** Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- c) **Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- d) Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- e) **Modern tool usage:** Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- f) The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- g) **Environment and sustainability:** Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- h) **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- i) **Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- j) Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

- k) Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Programme Specific Outcomes (PSOs)

- **1.** Analyze and design systems for electronics, communication, and signal processing applications.
- 2. Use domain specific tools for design, analysis, synthesis, and validation of VLSI and embeddedsystems
- **3.** Demonstrate the conceptual knowledge with respect to architecture, design analysis and simulation of computer networking and applications

Programme Educational Objectives (PEOs)

- **1.** Prepare students with thorough understanding of science, engineering, and technology to develop innovative solutions for challenges in industry and society
- **2.** Enable students to excel in academia, industry, entrepreneurship and engage in research and lifelong learning
- **3.** Train students to work effectively as individuals and in multidisciplinary environments with high integrity, ethics, human values and societal responsibility
- **4.** Impart skills to the students to design, develop and provide novel solutions for Electronics and Communication engineering problems
- 5. Equip students with strong leadership, communication, and teamwork skills to succeed in dynamic professional environments and contribute meaningfully to the global challenges

B. V. V. Sangha BASAVESHWAR ENGINEERING COLLEGE,

SCHEME OF TEACHING AND EXAMINATION

B.E. (Electronics & Communication Engineering)

w.e.f. 2022-23

I SEMESTER

				Teaching /		Teachi	ng hrs./week			Examina	ation		
SI. No.		ourse and ourse Code	Course Title	Paper setting Dept.	Lecture	Tutorial	Practical/ Drawing	Self-Study Component	Duration in hrs.	CIE Marks	SEE Marks	Total Marks	Credits
					L	Т	Р	S		ivia K5	Warks	ivia iks	
1.	ASC (IC)	22UMA101C	Mathematics for Electrical Sciences - I	Maths Dept.	3	0	2	0	5	50	50	100	4
2.	ASC (IC)	22UPH105C	Physics for Electrical Sciences	Physics Dept.	3	0	2	0	5	50	50	100	4
3.	ESC	22UEC113C	Basic Electronics	Dept.	3	0	0	0	3	50	50	100	3
4.	ESC-I	22UCS120E	Introduction to C Programming	CSE Dept.	2	0	2	0	4	50	50	100	3
5.	ETC-I	22UEC134B	Introduction to Embedded System	Dept.	3	0	0	0	3	50	50	100	3
6.		22UEC135B	Introduction to Communication Technology	Depti	3	Ŭ	Ŭ	Ŭ	5	50	30	100	Ĵ
7.	HSMC	22UHS124C	Communicative English	HSS Dept.	1	0	0	0	1	50	50	100	1
8.	HSMC	22UHS125C	Indian Constitution	HSS Dept.	1	0	0	0	1	50	50	100	1
9.	AEC	22UHS128C	Scientific Foundations of Health	Dept.	1	0	0	0	1	50	50	100	1
				Total	17	0	06	0	23	400	400	800	20

BASAVESHWAR ENGINEERING COLLEGE,

SCHEME OF TEACHING AND EXAMINATION

B.E. (Electronics & Communication Engineering)

w.e.f. 2022-23

II SEMESTER

				Teaching /		Teachir	ng hrs./week			Examina	ation		
SI. No.	-	ourse and ourse Code	Course Title	Paper setting Dept.	Lecture	Tutorial	Practical/ Drawing	Self-Study Component	Duration in hrs.	CIE Marks	SEE Marks	Total Marks	Credits
				-	L	Т	Р	S					
1.	ASC (IC)	22UMA201C	Mathematics for Electrical Sciences - II	Maths Dept.	3	0	2	0	5	50	50	100	4
2.	ASC (IC)	22UCH209C	Chemistry for Electrical Sciences	Chemistry Dept.	3	0	2	0	5	50	50	100	4
3.	ESC	22UME223C	CAED	Civil / Mechanical Dept.	2	0	2	0	4	50	50	100	3
4.	ESC-I	214N	Engineering Science Course-I (Introduction to Electronics Engineering)	Respective Dept.	3	0	0	0	3	50	50	100	3
5.	PLC-I	22UCS231B	Introduction to Python Programming	CSE Dept.	2	0	2	0	4	50	50	100	3
6.	HSMC	22UHS224C	Professional Writing Skills in English	HSS Dept.	1	0	0	0	1	50	50	100	1
7.	нѕмс	22UHS226C	Sanskritika Kannada	HSS Dept.	1	0	0	0	1	50	50	100	1
8.	HSIVIC	22UHS227C	Balake Kannada	noo dept.	T	U	U	U	T	50	50	100	T
9.	AEC	22UHS229C	Innovation and Design Thinking	Dept.	1	0	0	0	1	50	50	100	1
				Total	14	0	06	0	20	400	400	800	20

BASAVESHWAR ENGINEERING COLLEGE, BAGALKOTE

SCHEME OF TEACHING AND EXAMINATION

B.E. (Electronics & Communication Engineering)

w.e.f. 2022-23

III SEMESTER

				Teaching /		Teachi	ng hrs./week	(Examina	ation		
SI. No.		Course and ourse Code	Course Title	Paper setting Dept.	Lecture	Tutorial T	Practical/ Drawing	Self-Study Component	Duration in hrs.	CIE Marks	SEE Marks	Total Marks	Credits
1	BSC	22UIVIA3010	Partial Differential Equations and Integral Transforms	Maths Dept.	3	0	0	0	3	50	50	100	3
2	IPCC	22UEC302C	Semiconductor Devices and Circuits	Dept.	3	0	2	3	8	50	50	100	4
3	IPCC	22UEC303C	Digital Electronics and Logic Design	Dept.	3	0	2	3	8	50	50	100	4
4	PCC	22UEC304C	Network Analysis	Dept.	3	0	0	2	5	50	50	100	3
5	IPCC	22UEC305C	Data Structures using "C"	Dept.	3	0	2	3	8	50	50	100	4
6	AEC	22UBT340C	Biology for Engineers	BT Dept.	2	0	0	0	2	50	50	100	2
7	PCC	21UMA300M	Bridge Course Mathematics – I*	Maths Dept.	3*	0	0	0	3*	50*	50*	100*	0
	1	NS	National Service Scheme (NSS)	NSS CO	1							İ	
	MC	PE	Physical Education (PE)(Sports and Athletics)	PED	0	0	2	0	2	100	-	100	0
		YO	Yoga	PED									
	1			Total	17	0	8	11	36	400	300	700	20
!		<u> </u>	1	TOLAT	20*	0*	8*	11	39*	450*	350*	800*	20
		AAP	I Applicable for both Regular and		•			d and produced and produced fo			1		

BASAVESHWAR ENGINEERING COLLEGE,

B.E. (Electronics & Communication

w.e.f. 2022-

IV SEMESTER

				Teaching /		Teachi	ng hrs./week	(Examina	ation		
SI. No.		ourse and ourse Code	Course Title	Paper setting	Lecture	Tutorial	Practical/ Drawing	Self-Study Component	Duration in hrs.	CIE Marks	SEE Marks	Total Marks	Credits
				Dept.	L	Т	Р	S					
1.	BSC	22UMA401C	Statistics and Probability Distributions	Maths Dept.	3	0	0	0	3	50	50	100	3
2.	PCC	22UEC402C	Signals and Systems	Dept.	3	2	0	1	5	50	50	100	4
3.	IPCC	22UEC403C	Analog Circuit Design	Dept.	3	0	2	0	5	50	50	100	4
4.	IPCC	22UEC404C	Analog and Digital Communication	Dept.	3	0	2	0	5	50	50	100	4
5.	PCC	22UEC405C	ARM Microcontroller	Dept.	3	0	0	0	5	50	50	100	3
6.	PCC	21UEC406L	ARM Microcontroller laboratory	Dept.	0	0	2	0	2	50	50	100	1
7.	HSSM	22UHS424C	Universal Human Values - II	HSS Dept.	1	0	0	0	1	50	50	100	1
8.	PCC	22UMA400M	Bridge Course Mathematics – II*	Maths Dept.	3*	0	0	0	3*	50*	50*	100*	0
		NS	National Service Scheme (NSS)	NSS CO									
	МС	PE	Physical Education (PE)(Sports and Athletics)	PED	0	0	2	0	2	100	-	100	0
	IVIC	YO	Yoga	PED									
				Total	16	0	8	11	35	400	300	700	20
				TOtal	19*	0	8*	11	38*	450*	350*	800*	20
		AAP	AICTE Activity Points (Applicable for both Regular and Lateral Entry students)		-			d and produced nd produced fo)		

BASAVESHWAR ENGINEERING COLLEGE,

w.e.f. 2022-

B.E. (Electronics & Communication **V SEMESTER**

				Teaching /		Teachi	ng hrs./week	(Examina	ation		
SI. No.		ourse and ourse Code	Course Title	Paper setting Dept.	Lecture	Tutorial T	Practical/ Drawing P	Self-Study Component	Duration in hrs.	CIE Marks	SEE Marks	Total Marks	Credits
1	PCC	22UEC501C	Digital Signal Processing	Dept.	3	0	0	0	3	50	50	100	3
2	PCC	22UEC502C	Control Engineering	Dept.	3	0	0	1	3	50	50	100	3
3	PCC	22UEC503C	Computer Networks	Dept.	3	0	0	0	3	50	50	100	3
4	PCC	22UEC504L	Digital Signal Processing Laboratory	Dept.	0	0	2	0	2	50	50	100	1
		22UEC506E	Internet of Things										
4	PEC	22UEC507E	Verilog Programming	Dept.	3	0	0	0	3	50	50	100	3
4	FLC	22UEC508E	Mobile Communication	Dept.	5	0	0	0	5	50	50	100	3
		22UEC509E	Speech Processing										
5	AEC	22UHS521C	Quantitative Aptitude and Professional Skills	Placement Dept.	2	0	0	0	2	50	50	100	2
		22UEC508N	Wireless Networks										
6	OEC	22UEC532N	Digital Electronics and Microcontrollers	Dept.	3	0	0	0	3	50	50	100	3
7	HSSM	22UBT522C	Environmental Studies	BT Dept.	1	0	0	0	1	50	50	100	1
8	MP	22UEC511P	Mini Project	Dept.	0	0	4	0	4	50	50	100	2
		NS	National Service Scheme (NSS)	NSS CO									
	МС	PE	Physical Education (PE)(Sports and Athletics)	PED	0	0	2	0	2	100	-	100	0
		YO	Yoga	PED									
				Total	18	0	8	7	33	500	400	900	21
		AAP	AICTE Activity Points (Applicable for both Regular and Lateral Entry students)		•			d and produced and produced f			1		

BASAVESHWAR ENGINEERING COLLEGE,

B.E. (Electronics & Communication

w.e.f. 2022-

VI SEMESTER

				Teaching /		Teachi	ng hrs./week			Examina	ation		
SI. No.	-	ourse and ourse Code	Course Title	Paper setting Dept.	Lecture	Tutorial T	Practical/ Drawing	Self-Study Component	Duration in hrs.	CIE Marks	SEE Marks	Total Marks	Credits
1	IPCC	22UEC601C	Information Theory and Coding	Dept.	3	0	2	0	5	50	50	100	4
2	PCC	22UEC602C	Electromagnetic Theory	Dept.	3	0	0	0	3	50	50	100	3
3	PCC	22UEC603C	CMOS Digital VLSI Design	Dept.	3	0	0	0	3	50	50	100	3
5	PCC	22UEC618L	CMOS Digital VLSI Design Laboratory	Dept.	0	0	2	0	2	50	50	100	1
6	PCC	22UEC619L	Computer Network Laboratory	Dept.	0	0	2	0	2	50	50	100	1
5	AEC	22UEC615C	Java Programming	Dept.	2	0	0	2	4	50	50	100	1
		22UEC616E	Micro Eelectro Mechanical Systems										
6	PEC	22UEC607E	Computer Organization	Dept.	3	0	0	0	3	50	50	100	3
0	PEC	22UEC615E	Embedded Systems	Dept.	Э	0	0	0	5	50	50	100	З
		22UEC617E	Digital Verification										
		22UEC614E	Fiber Optics and Networks										
7	OEC	22UEC609N	Sensor Technology	Dept.	3	0	0	0	3	50	50	100	3
	OLC	22UEC610N	Image Processing	Dept.	ר	0	U	U	5	50	50	100	5
8	PR	22UEC608P	Project Work	Dept.	0	0	6	0	6				0
		NS	National Service Scheme (NSS)	NSS CO									
	MC	PE	Physical Education (PE)(Sports and Athletics)	PED	0	0	2	0	2	100	-	100	0
		YO	Yoga	PED									
				Total	19	2	8	10	39	450	350	800	19
		AAP	I Applicable for both Regular and		•			d and produced nd produced fo			1		

BASAVESHWAR ENGINEERING COLLEGE,

B.E. (Electronics & Communication

w.e.f. 2022-

VII SEMESTER

				Teaching /		Teachi	ng hrs./week			Examina	ation		
SI. No.		ourse and ourse Code	Course Title	Paper setting Dept.	Lecture	Tutorial	Practical/ Drawing	Self-Study Component	Duration in hrs.	CIE Marks	SEE Marks	Total Marks	Credits
1	DCC	2211507040			L	T	P	S		50	50	100	2
1	PCC	22UEC701C	Microwaves and Antenna	Dept.	3	0	0	2	5	50	50	100	3
		22UEC711E	DSP Algorithms and Architecture										
2	PEC	22UEC712E	Machine Learning	Dept.	3	0	0	0	3	50	50	100	3
2	120	22UEC713E	RTL to GDS2	Dept.	5	Ŭ	U	Ŭ	5	50	50	100	<u> </u>
		22UEC714E	Multimedia Communication										
		22UEC715E	Multi-rate Signal Processing										
3	PEC	22UEC716E	Cyber Security	Dept.	3	0	0	0	3	50	50	100	3
5	T LC	22UEC717E	IC Technology	Dept.	5	U	U	U	5	50	50	100	5
		22UEC718E	Operating Systems										
4	HSSM	22UEC709N	Human Resource and Management	Dept.	3	0	0	0	3	50	50	100	3
5	PR	22UEC708P	Project Work	Dept.	0	0	6	0	6	50	50	100	12
				Total	12	0	06	2	20	250	250	500	24
		AAP	AICTE Activity Points (Applicable for both Regular and Lateral Entry students)		•			d and produced nd produced fo			1		

BASAVESHWAR ENGINEERING COLLEGE,

B.E. (Electronics & Communication

w.e.f. 2022-

VIII SEMESTER

				Teaching /		Teachi	ng hrs./week	(Examina	ation		
SI. No.	-	ourse and ourse Code	Course Title	Paper setting	Lecture	Tutorial	Practical/ Drawing	Self-Study Component	Duration in hrs.	CIE Marks	SEE Marks	Total Marks	Credits
				Dept.	L	Т	Р	S		in a na	marks	in a no	
1.	AEC	22UECXXXX	MOOCs	Online	0	0	0	0	0	0	0	0	3
2.	OEC	22UECXXXX	MOOCs	Online	0	0	0	0	0	0	0	0	3
3.	INT	22UEC801T	Internship	Industry	0	0	0	0	0	50	50	100	10
				Total	0	0	0	0	0	50	50	100	16

Syllabus for B.E. I & II – Semester for academic year 2022 – 2023 (For students admitted to I year in 2022-23)

22UEC113C		03-Credits, L:T:P (3:0:0)
Hrs/Week: 03	Basic Electronics	CIE Marks:50
Total Hours: 40		SEE Marks:50

UNIT – I	10 Hrs
Semiconductor Diodes: Introduction, PN junction diode, characteristics and para	meters, diode
approximations, DC load line analysis Diode Applications: Introduction, half wave rectification, full wave rectification rectifier power supply: Capacitor filter circuit, voltage multiplier, diode logic gates Zener Diodes: Junction breakdown, circuit symbol and package, characteristics an equivalent circuit, Zener diode voltage regulator. Self-study component: ESAKI diode and its working	S
UNIT – II	10 Hrs
Bipolar Junction Transistors: Introduction, BJT voltages and currents, cor	nmon base
characteristics, common emitter characteristics, common collector characteristics,	
BJT Biasing: Introduction, DC load line and bias point, BJT amplification, volt	age divider
bias.	0
Amplifier and Oscillator: Single stage CE-amplifier, RC-phase shift oscillator, L	C oscillator
Self -study component: BJT as a switch UNIT - III	10 Hrs
Operational Amplifiers: Introduction, the operational amplifier, block diagram	
of typical op-amp, schematic symbol, op-amp parameters - gain, input resist resistance, CMRR, slew rate, bandwidth, input offset voltage, input bias current are current, the ideal op-amp, equivalent circuit of op-amp, open loop op-amp co- differential amplifier, inverting & non inverting amplifier Op-Amp Applications: Inverting configuration, non-inverting configuration, differentiator Self-study component: Op-Amp as zero crossing detector	id input offset onfigurations,
UNIT - IV	10 Hrs
Boolean Algebra and Logic Circuits: Binary numbers, number base conversion hexadecimal numbers, complements, basic definitions, axiomatic definition of algebra, basic theorems and properties of Boolean algebra, Boolean functions, can standard forms, other logic operations, digital logic gates Combinational logic: Introduction, design procedure, adders- half adder, full add Communications: Introduction to communication, communication system, module Self-study component: Half subtractor and full subtractor	of Boolean nonical and ler
Reference books:	
 Mike Tooley, 'Electronic Circuits, Fundamentals & Applications', 4th Edit 2015. Digital Logic and Computer Design, M. Morris Mano, PHI Learning, 200 81-203-0417-84. D. B. Kethari, J. L. Nagrath, 'Basis, Electronics', 2nd, edition, MaCraw, H. 	08 ISBN-978-
3) D P Kothari, I J Nagrath, 'Basic Electronics', 2 nd edition, McGraw Hi (India),Private Limited, 2018	in Education

Course Outcomes:

A student who successfully completes this course should be able to

CO1: Design the basic circuits to get V-I characteristics of semiconductor devices.

CO2: Design a BJT amplifier to meet the given specifications.

CO3: Identify and analyze the different configurations of operational amplifier.

CO4: Design simple logic circuits using basic gates.

CO5: Design type of modulation necessary for a given communication applications.

Course	Pro	gramn	ne Outo	comes								
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	3	2	-	2	2	-	-	-	-	-	-
CO2	3	2	3	-	2	1	-	-	-	-	-	-
CO3	3	2	3	-	3	-	-	-	1	-	-	-
CO4	2	1	1	-	2	1	-	-	1	-	-	1
CO5	2	1	1	-	2	1	-	-	1	-	-	1

22UEC135B		03-Credits (2:0:2:0)
Hrs/Week: 03	Introduction to Communication Technology	CIE Marks:50
Total Hours: 40		SEE Marks:50

Course Objectives:

The objectives of the course are to

- 1. Know the fundamentals of different communication systems.
- 2. Understand modern communication techniques and their utility in modern cellular communication systems.
- 3. Know the design principles of cellular communication systems.
- 4. Understand the different communication standards.

Course Outcomes:

After completion of this course the students are able to

CO1: Analyze different communication systems with respect to operation and utility.

CO2: Choose suitable modulation technique for cellular mobile systems.

CO3: Decide specific channel multiple access techniques for a communication application.

CO4: Choose specific communication standards for a given communication application.

UNIT – I	
Introduction to communication systems: Elements of communication	
systems, Need for modulation, Electromagnetic spectrum and applications,	
Terminologies in communication systems	
Introduction to wireless .communication systems: Evolution of mobile radio	
communication, Beginning of Radio, Wireless mobile communication,	
Applications of wireless communication, Disadvantages of wireless	
communication systems, Examples of wireless communication systems,	
Difference between fixed telephone network and wireless telephone network,	
Development of wireless communication, Fixed network transmission hierarchy,	
Comparison of wireless communication systems	
	10 Hrs
UNIT – II	
Modern communication systems: Introduction, First generation (1G), Second	
generation (2G), Generation (2.5G), Third generation (3G), Evolution from 2G to	
3Gt, Fourth generation (4G), Digital cellular parameters, Differences between	
analog cellular and digital cellular systems, wireless local loop (WLL), wireless	
local area networks (WLANs), Personal Area Networks (PANs), Bluetooth	
Introduction to cellular mobile systems: Introduction, Spectrum allocation,	
International telecommunication union (ITU), Wireless communication system,	
Basic components of cellular systems, Cellular system architecture, GSM: Most	
popular cellular system, type of channels, Cell concept in wireless	
communication, shape selection of the cell	
	10 Hrs
UNIT – III	
Collular motor design fundamentales Interduction Freemannes Collular	
Cellular system design fundamentals: Introduction, Frequency reuse, Cellular	
capacity increasing parameters, channel assignment strategies, Hand-off	
strategies, Hands-off Initiation, Type of hands-off on the basis of decision making	
process, channel assignment strategies for hands-off, Interference, Tracking,	
Trunking, Grade of service	10 Hrs
	101113

UNIT – IV	
Multiple access techniques for wireless communication: Introduction,	
Frequency Division Multiple Access (FDMA), Time Division Multiple Access	
(TDMA), Advanced TDMA, Multipath interference, Comparison between	
TDMA & FDMA, Space Division Multiple Access (SDMA), Spread spectrum,	
types of spread spectrum, Code Division Multiple Access (CDMA)	
Radio wave propagation: Introduction, Doppler shift, parameters of multipath	
channels, fading, diversity techniques, free space propagation model,	
Phenomenon of propagation, Propagation models	
	10 Hrs

Reference books:

George Kennedy, Bernard Davis, S R M Prasanna, "Electronic Communication Systems", Tata McGraw Hill Education Private Limited, New Delhi, 5th Edition
 Rajeshwar Dass, "Wireless Communication Systems", I. K. international Publishing

House Pvt. Ltd., New Delhi

Course Articulation Matrix

Course Outcomes	Programme Outcomes											
	1	2	3	4	5	6	7	8	9	10	11	12
CO1 : Develop the basic knowledge on communication and their classifications	3	2	3	-	2	2	-	-	-	-	-	-
CO2 : Apply the acquired knowledge to analyze differences in Generation techniques based on Modern and cellular mobile systems.	3	3	2	-	2	1	-	-	-	-	-	-
CO3 : Develop the competence knowledge to preparing fundamental channels assignment strategies.	3	2	3	-	3	-	1	-	-	-	-	-
CO4 : Apply the gained knowledge to evaluating the parameters for the multipath channels in Radio wave propagation.	2	1	1	-	3	1	1	-	-	-	-	-

22UEC134B		03-Credits, L:T:P (3:0:0)
Hrs/Week: 03	Introduction to Embedded System	CIE Marks:50
Total Hours: 40		SEE Marks:50

Course Objectives:

embedded systems.

- 1. To provide knowledge of embedded systems, applications, purpose and processor architectures.
- 2. To provide background knowledge of communication interfaces, characteristics and quality attributes of embedded systems.
- 3. To study general purpose processors software and processor peripherals.
- 4. To impart knowledge of 8051 Microcontroller, features and its applications.

	10 II
UNIT - I	10 Hrs
Introduction to embedded systems, Embedded system vs. general comput Classifications, Purpose of embedded system, Major application areas. The typic system, Microcontrollers, Microprocessors, RISC, CISC, Harvard and Von-N Endian, Little Endian processors.	cal embedded leumann, Big
UNIT – II	10 Hrs
Memory, Sensors, Actuators, Communication interface: Inter Integrated Interpreter Peripheral interface, UART, Parallel interface, RS232 and Bluetooth. Characteristic attributes of embedded systems.	cs and quality
UNIT - III	10 Hrs
General purpose processors software: Introduction, Basic architecture, Operation, I program and data memory space, registers, I/O, interrupts, Operating Sys Microcontrollers, DSP, Selecting Microprocessor.	
Standard Single Purpose Processors peripherals: Introduction, Timers, Counters a timers, UART.	nd watch dog
UNIT - IV	10 Hrs
8051 Microcontroller: Introduction, Features of 8051 Microcontroller, Block di	agram, ALU,
PC, ROM, RAM, Address line, Data line, Special function registers, RAM organi	zation, Stack,
Basics of Serial Communication, Interrupts, Timers and counters, Input output	ports, simple
pseudo code.	
Reference books:	
 Shibu K V, "Introduction to embedded systems", Tata McGraw Hill private li Frank Vahid, Tony Givargis, "Embedded system design: A unified hardward introduction", John Wiley and Sons, 2001. Kenneth J Ayala, "The 8051 Microcontroller, Architecture progra applications", West publishing company, college and school division, 1997. Rajkamal, "Embedded systems: architecture, programming and design", Tata private limited, second edition. 	e/software mming and
Course Outcomes:	
A student who successfully completes this course should be able to	
CO1: Gain comprehensive knowledge about embedded systems, major applic embedded systems and processor architectures.	
CO2: Analyze communication interfaces, characteristics and quality attributes systems.	
CO3: Identify general purpose processors software and processor peripherals	necessary for

CO4: Explore 8051 Microcontroller capabilities and able to write pseudo codes.

Course	Programme Outcomes											
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	1	1	-	1	1	1	1	1	1	-	1
CO2	3	2	2	-	1	1	1	1	1	2	-	1
CO3	3	2	2	-	1	2	1	1	2	1	-	2
CO4	3	2	2	-	1	2	1	1	2	1	-	2

22UEC114N/22UEC214N		03-Credits, L:T:P (3:0:0)
Hrs/Week: 03	Introduction to Electronics Engineering	CIE Marks:50
Total Hours: 40		SEE Marks:50

Course Objectives:

- 1) Understand the operation of semiconductor devices and their applications.
- 2) Know transistor (BJT) as an amplifier.
- 3) Study Op-Amps and its applications.
- 4) Know logic circuits and their optimization.
- 5) Understand the principles of transducers and communication systems.

UNIT - I	10 Hrs
Power Supplies –Block diagram, PN Junction Diode Characteristics, Half-wave	
wave rectifiers and filters, Voltage regulators, Output resistance and voltage regulators	
multipliers.	ution, voltage
BJT Characteristics and Biasing- Common Base and Common Emitter Co	onfigurations,
Voltage Divider Biasing.	0
Self study component: Switched Mode Power Supply.	
UNIT – II	10 Hrs
Amplifier and Oscillators – Single Stage CE Amplifier, Barkhausen criterion, sin	usoidal and
non-sinusoidal oscillators, Ladder network oscillator, Wein bridge oscillator, Mul	ltivibrators,
Single-stage astable oscillator, Crystal controlled oscillators (Only Concepts, we	orking, and
waveforms. No mathematical derivations)	
Operational amplifiers - Ideal op-amp; characteristics of ideal and practication	al op-amp;
Practical op- amp circuits: Inverting and non-inverting amplifiers, voltage followed	er, summer,
integrator, differentiator.(Text 1)	
Self study component: Op-Amp as zero crossing detector	
UNIT - III	10 Hrs
Boolean Algebra and Logic Circuits: Binary numbers, Number Base Conversion,	octal & Hexa
Decimal Numbers, Complements, Basic definitions, Axiomatic Definition of Boo	lean Algebra,
Basic Theorems and Properties of Boolean Algebra, Boolean Functions, Canonical	and Standard
Forms, Other Logic Operations, Digital Logic Gates	
Combinational logic: Introduction, Design procedure, Adders- Half adder, Full a	dder, Parallel
Adder	
Self study component: Half subtractor and full subtractor	
UNIT - IV	10 Hrs
Analog Communication Schemes – Modern communication system scheme, In	
source, and input transducer, Transmitter, Channel or Medium – Hardwired and S	
Noise, Receiver, Multiplexing, Types of communication systems. Types of modula	ation (only
concepts) – AM, FM.	
Digital Modulation Schemes: Advantages of digital communication	over analog
communication, ASK, FSK, PSK, Radio signal transmission Multiple access tech	niques.
Sensors and Interfacing – Instrumentation and control systems, Transducers, Sen	nsors.
Self study component: Opto-couplers	

Reference books:

- **1)** Mike Tooley, 'Electronic Circuits, Fundamentals & Applications', 4th Edition, Elsevier, 2015.
 - **2)** Digital Logic and Computer Design, M. Morris Mano, PHI Learning, 2008 ISBN-978-81-203-0417-84.
 - **3)** D P Kothari, I J Nagrath, 'Basic Electronics', 2nd edition, McGraw Hill Education (India), Private Limited, 2018

Course Outcomes:

A student who successfully completes this course should be able to

CO1: Differentiate semiconductor devices and their parameters based on V-I characteristics.

CO2: Analyze the applications of electronic devices and circuits.

CO3: Analyze logic circuits built with basic gates.

CO4: Solve numerical problems related to basic electronic circuits and systems.

CO5: Decide type of transducer, sensor and modulation for a given application.

Course	Pro	Programme Outcomes														
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12				
CO1	3	3	2	-	2	2	-	-	-	-	-	-				
CO2	3	2	3	-	2	1	-	-	-	-	-	-				
CO3	3	2	3	-	3	-	-	-	1	-	-	-				
CO4	2	1	1	-	2	1	-	-	1	-	-	1				
CO5	2	1	1	-	2	1	-	-	1	-	-	1				

Syllabus for B.E. III & IV – Semester for academic year 2023 – 2024 (For students admitted to I year in 2022-23)

III Semester Syllabus

22UMA301C		Credits :03
L:T:P - 3-0-0	Partial Differential Equations and Integral Transforms	CIE Marks : 50
Total Hours/Week: 03		SEE Marks : 50

UNIT – I Partial Differential Equations I	10 Hrs.
Introduction to PDE, Formation of PDE's by elimination of arbitrary constants	and functions.
Solution of non-homogeneous PDE by direct integration. Homogeneous PDEs involve	ing derivatives
with respect to one independent variable only. Solution of Lagrange's linear PDE.	
(RBT Levels: L1, L2 and L3)	
UNIT – II Partial Differential Equations II	10 Hrs.
Solutions of PDE by the method of separation of variable. Derivation of one-dimens	sional heat and
wave equations and their solutions by explicit method, solution of Laplace equation	by using five
point formulas.	
(RBT Levels: L1, L2 and L3)	
UNIT – III Fourier series	10 Hrs.
Periodic functions, Conditions for Fourier series expansions, Fourier series expansion	of continuous
and functions having finite number of discontinuities, even and odd functions. Half	f- range series,
practical harmonic analysis.	
(RBT Levels: L1, L2 and L3)	
UNIT – IV Fourier transforms and z-transforms	10 Hrs.
Infinite Fourier transforms and inverse Fourier transforms- simple properties, Fo	urier sine and
Fourier cosine transforms, Inverse Fourier sine and cosine transforms. Z-transfor	,
standard forms, linearity property, damping rule, shifting rule-problems. Inverse Z-tra	ansforms.
(RBT Levels: L1, L2 and L3)	
References:	
1. Numerical Methods for Engineers by Steven C Chapra & Raymond P Canale.	
2. Higher Engineering Mathematics by Dr. B.S. Grewal, Khanna Publishers, New	v Delhi.
3. Advanced Engineering Mathematics By H. K. Das, S. Chand & company Ltd. Nagar, New Delhi.	Ram
4. Advanced Engineering Mathematics by E Kreyszig ,John Wiley & Sons.	

Course Objectives:

- 1. PDE"s provides a powerful tool for quantifying rates of change optimizing functions, and modeling complex systems.
- 2. To provide a way, to represent periodic functions in terms of simple trigonometric functions.
- 3. To transform a function from the time domain to the frequency domain.
- 4. Provides a powerful mathematical tool for analyzing, designing, and manipulating discrete time signals and systems.

Course Outcomes:

After completion of the course the students shall be able to,

- 1. Identify different types of PDEs including linear vs nonlinear, first order vs higher-order, and partial derivatives of different variables.
- 2. Learn various analytical techniques to solve to specific types of PDEs, such as variable separable and explicit method.
- 3. Grasp the concept of representing periodic functions as an infinite sum sinusoidal (sine and cosine) with different frequencies.
- 4. Grasp the concept of the Fourier transform as a mathematical tool that converts a function from the time domain into the frequency domain.

SUBJECT CODE:	

Credits: 04

CIE Marks: 50 SEE Marks: 50

22UEC302C **Semiconductor Devices and Circuits** L:T:P:S - 3:0:2:3Total Hours/Week: 03 **UNIT-I Field Effect Transistors:** Introduction, construction, operation and characteristics of JFETs, transfer characteristics. Introduction to MOSFETs, depletion type MOSFET, enhancement type MOSFET, MOS capacitor. Thyristors: Introduction, construction, operation and characteristics of SCR, TRIAC, UJT. Applications of Diode: clippers and clampers **UNIT-II** FET Biasing: Introduction, Fixed bias configuration, Self bias configuration, Voltage divider biasing, Common gate configuration, Design, p-channel FETs, Universal JFET bias curve. **UNIT-III** FET amplifiers: Introduction, JFET small signal model, voltage divider bias configuration, frequency response of amplifiers. **Power Supplies** (Voltage Regulators): Introduction, general filter considerations, capacitor filter, RC filter, discrete transistor voltage regulation, IC voltage regulators. **UNIT-IV** Optoelectronic Devices: Light units, Light emitting diode (LED), liquid crystal displays (LCD), photo conductive cell, photo diode, solar cells, photo transistors, and optocouplers **Miscellaneous Devices:** Schottky diode, varactor diode, power diode, tunnel diode. PRACTICAL COMPONENT OF IPCC Suggested Simulation/Modeling/Design/Verification/Hardware Boards/etc. (preferably open sources): **1.** Hardware implementation using discrete components for the following experiments. 2. Demonstrate the operation of the following circuits using suitable simulation software (Open source such as Proteus, Simulink, eSim, Psim) **Reference Books** * 1. Nashelesky & Boylestead, "Electronic Devices & Circuit Theory", 10th Edition, Pearson, 2009. 2. Adel S. Sedra, Kenneth C. Smith & Arun N. Chandorkar, Microelectronic Theory and Applications, 2013, Fifth edition, Reprint, Oxford University press, New York, USA. 3. D.A. Bell, "Electronic Devices & Circuit", 4th Edition, PHI, 2007. Web links and Video Lectures (e-Resources): 1. https://spoken-tutorial.org/tutorial-search/?search_foss=eSim&search_language=English 2. https://www.google.com/search?g=NPTEL+videos+on+optoelectronics+electronics&rlz=1 C1CHMY enIN992IN992&og=NPTEL+videos+on+optoelectronics+electronics&ags=chr ome..69i57j33i160.1193773779j0j15&sourceid=chrome&ie=UTF-8#fpstate=ive&vld=cid:a2be5200,vid:WWjldCmRteg Course Outcomes** After completion of the course student will be able to 1. Design clipper, clamper and differentiate different types of electronic devices.

10 Hrs.

10 Hrs.

10 Hrs

10 Hrs

2. Design of MOSFET amplifier for the given specifications using the knowledge of Field Effect Transistor.

3. Design regulated power supply to meet the given specifications and Choose a specific FET and other components to design an amplifier

4. Differentiate the characteristics and their importance of different optoelectronic and other two terminal devices for various applications.

Sl. No.	Experiments
1	Design a circuit to measure cut in and reverse breakdown voltage of a diode.
2	Analysis of a diode halfwave and fullwave rectifier with and without capacitor filter.
3	Design a circuit to measure cut in and reverse breakdown voltage of Zener diode.
4	Design a voltage regulator using Zener diode and its regulation analysis.
5	Construct a circuit to measure and plot the input and output characteristics of a transistor for calculating h-parameters under CB/CC /CE configuration.
6	Construct a circuit to perform clipping of positive half cycle/negative half cycle.
7	Construct a circuit to perform controlled level shifting of positive half cycle/negative half
	cycle.
8	Design and implement a circuit to amplify the low level signal using BJT/FET under
	CE/CS configuration and analyse the frequency response.
9	Design a circuit to plot the drain and transfer characteristics of JFET and hence find transconductance.
10	Design and implement RC phase shift/Colpitt's/Hartley oscillator for the given specifications.
11	Voltage versus current characteristics and its analysis of silicon controlled rectifier (SCR).
12	Design and implementation of controlled rectifier.
13	V-I characteristics and analysis of UJT.
14	Design and implementation of UJT as a relaxation oscillator.
15	Design 5V/12V regulated power supply.

Course Outcomes				Pro	ograi	nme	Out	com	es (P	Os)				gram Spe comes (P	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	3	2	1	1	0	1	1	1	1	1	3	0	0
CO2	3	3	2	2	1	1	0	1	1	1	1	1	3	0	0
CO3	3	2	3	2	1	1	1	1	1	1	1	1	3	0	0
CO4	3	3	3	2	1	1	1	1	1	1	1	1	3	0	0

SUBJECT CODE: 22UEC303C		Credit	s: 04
L:T:P:S - 3:0:2:3	Digital Electronics and Logic Design	CIE Mark	as: 50
Total Hours/Week: 03		SEE Marl	ks: 50
	UNIT-I		10 Hrs
6	als:Basic definitions, Axiomatic definition of	U	
*	of Boolean Algebra, Boolean Functions, Canoni		
	AND and NOR Implementation, Generation of S linimization: Introduction, The K-Map Method		
	UNIT-II		10 Hrs
Procedure, Half Adder, Full	l Logic Circuits: Introduction to Combina Adder, Half Subtractor, Full Subtractor, N-bit F der, BoothMultiplier, Magnitude Comparator er.	Parallel Adder	Subtractor,
	UNIT–III		10 Hrs
Slave SR and JK Flip-l	The Basic Bistable Element, Latches, Flip-Flops Flop, Positive and Negative Edge Triggered stic Equations. Registers (SISO, SIPO, PISO and ed Shift Registers.	d D Flip-Flo	p, Timing
	UNIT-IV		10 Hrs
Asynchronous Counter usin	Counters, Synchronous Binary Counters, Desing clocked JK, D, T and SR Flip-Flops. Finite Statign Example: Sequence Detection.		
FRACTICAL COMPONE	NI OF IPCC		
Suggested Simulation/Mod 1. Quartus II 2. Logic Circuit Simula 3. Proteus Simulator. 4. Digital IC Trainer Ki		tc.	
Reference Books *			
	igital Principle and Design", Tata McGraw Hill H Aichael D. Ciletti, "Digital Design: With an Introd	-	/erilog HD1

- 2. M. Morris Mano and Michael D. Ciletti, "Digital Design: With an Introduction to the Verilog HDL and System Verilog", 6th Edition, Pearson Private Limited, 2016.
- 3. John M. Yarbrough, "Digital Logic Applications and Design", Thomson Learning, 2001Author/s last Name, initial (Year), Book Title (edition), Publisher

Web links and Video Lectures (e-Resources):

- 1. https://nptel.ac.in/courses/117106011
- 2. https://a.impartus.com/ilc/#/course/591142/1030

Course Outcomes**

After completion of the course student will be able to

- 1. Optimize the logic functions using Boolean principles and various mapping techniques.
- 2. Design and implement different combinational logic circuits.
- 3. Analyze and apply the design aspects of sequential logic circuits.
- 4. Analyze the design aspects of counters and finite state machine.

Sl. No.	Hardware Experiments
1	Simplification, realization of Boolean expression(s) using basic logic gates and universal gates.
2	Design and implementation of adders, subtractors using basic gates.
3	Design and implementation of parallel adder/subtractor using IC 7483.
4	Realization of decoder chip to drive LED display.
5	Design and implementation of code converters (any two).
6	Implementation of three variable Boolean expression(s) using 4:1MUX and 8:1MUX.
7	Design and implement
	i. 1-bit and 2-bit comparator using basic gates
	ii. 4-bit and 8-bit using IC 7485.
8	Design and implement
	i. Master Slave JK flip-flop using only NAND gates
	ii. JK flip flop using7476.
9	Design UP and DOWN counter using IC 74193.
10	Design of shift registers using 7 495 viz. SIPO, SISO, PISO, PIPO shift right, shift left.
	Software Experiments
1	Serial adder
2	Memory unit
3	Parallel adder and accumulator
4	Binary multiplier
5	Lamp handball

Course Outcomes		Programme Outcomes (POs)					Program Specific Outcomes (PSOs)								
	1	2	3	4	5	6	7	8	9	1 0	1 1	1 2	1	2	3
CO1	3	3	3	1	2	1	1	1	2	1	-	1	3	1	-
CO2	3	3	3	2	1	1	1	1	2	1	-	1	3	1	-
CO3	3	3	3	2	1	1	1	1	2	1	-	1	3	1	-
CO4	3	2	3	3	2	1	1	1	2	1	-	1	3	1	-

SUBJECT CODE: 22UEC304C		Credits: 03			
L:T:P:S -3:0:0:2	NETWORK ANALYSIS	CIE Marl	s: 50		
Total Hours/Week: 03		SEE Marks: 50			
	UNIT-I		10 Hrs		
Introduction to network	analysis: Reference directions for current and	voltage, Inder	pendent and		
dependent sources, Source	transformation, Mesh and Nodal analysis with de	pendent and i	ndependent		
sources for AC, DC and bri	dge networks, Star-delta and Delta-star conversion	ons			

UNIT-II10 HrsNetwork theorems: Superposition theorem, Millman's theorem, Thevenin's theorem, Norton's
theorem, Maximum power transfer theorem

Network graphs: Definition of terms. Matrices associated with graphs: incidence, reduced incidence, fundamental cut-set and fundamental tie-set, analysis of networks

UNIT-III10 HrsTransients analysis: (i) RC transients: Storage cycle, Initial values, Instantaneous values, Application;(ii) RL transients: Storage cycle, Initial values, Instantaneous values, ApplicationLaplace transformation: Basic theorems, Laplace transform of periodic functions, application of

Laplace transform to RL and RC circuits.

Unit - 4

10 Hrs.

Two-Port Network: Two port network analysis using Impedance (Z) parameters, Admittance (Y) parameters, Hybrid (h) parameters and transmission parameters. Relationship between parameters. **Principles of Attenuators and equalizers:** Design of Symmetrical T-type, π -type, Lattice and Bridged-T attenuator, Asymmetrical T, L, and PI attenuators. Design of two terminal series and shunt equalizers

PRACTICAL COMPONENT OF PCC

Suggested Simulation/Modeling/Design/Verification/Hardware Boards/etc. :

Demonstrate the operation of the following circuits using suitable simulation software (Open source such as Psim, Pspice, Proteus, Simulink, eSim)

Reference Books *

Reference Books

- 1. Robert L. Boylestad, "Introductory Circuit Analysis"(13th edition), Prentice Hall, 2015
- Roy Choudhary, "Networks and systems", 2nd Edition, New Age International Publications, 2006
- 3. Hayt, Kemmerly and Durbin, "Engineering Circuit Analysis", 9th Edition, TMH, 2006.
- 4. G. K. Mithal, "Network Analysis", Khanna Publishers, 1997

Web links and Video Lectures (e-Resources):

- 1. https://nptel.ac.in/courses/108105159
- 2. <u>https://nptel.ac.in/courses/108102042</u>
- 3. <u>https://spoken-tutorial.org/tutorial-search/?search_foss=eSim&search_language=English</u>
- 4. <u>https://psim.software.informer.com/11.1/</u>
- 5. <u>www.ni.com/multisim</u>

Course Outcomes**

After completion of the course student will be able to

- 1. Apply various circuit analysis techniques such as mesh analysis, nodal analysis, and source transformation to investigate AC and DC networks
- 2. Solve voltage and currents in the networks using network theorems and topology

- Analyze the transient behavior of elements using Laplace transformation
 Evaluate two-port network parameters and to design attenuators and equalizers

Sl. No.	Experiments
1	Determination of current through each branch of a given network using mesh analysis
2	Determination of current through each branch of a given network using nodal analysis
3	Simplification of given network using star-delta conversion and finding the current in load
4	Simplification of given network using source conversion and finding the current in load
5	Verification of Superposition theorem
6	Verification of Thevenin's theorem
7	Verification of Norton's theorem
8	Verification of Maximum power transfer theorem
9	Verification of Millman's theorem
10	To plot frequency response of RL and RC network
11	To design and verify symmetrical attenuators
12	To design and verify Asymmetrical attenuators

Course Outcomes				Pro	ogra	mme	Out	com	es (P	Os)			Prog Out	gram Spo comes (P	ecific 'SOs)
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	1	1	1	0	0	0	1	0	0	1	3	0	0
CO2	3	3	1	1	1	0	0	0	1	0	0	1	3	0	0
CO3	3	3	1	1	1	0	0	0	1	0	0	1	3	0	0
CO4	3	2	1	1	1	0	0	0	1	0	0	1	3	0	0

22UEC305C			
L:T:P:S – 3:0:2:3	Data Structures using "C"	CIE Marl	ks: 50
Total Hours/Week: 03		SEE Mar	ks: 50
	UNIT-I		10 Hrs
	res, classifications (primitive & non primitive),		
	nory allocation, pointers to arrays, structures, s		
-	tions: Functions (Passing structure variable as an	argument, pa	ssing whole
structure asargument, passi	ng structure variable as a pointer argument, etc).		40.77
			10 Hrs
•	ays (Using calloc() or malloc()), array Operation	-	
	orting. Stacks: definition, stack operations (push		
	nditions), array representation of stacks, stacks us	•••	•
	ix conversion, evaluation of postfix expression, pr	ogram to eval	uate postfix
expression, program to con	vert Infix to Postfix expression.		10 Hrs
Requiring Easterial GCE	D, Fibonacci sequence, tower of Hanoi. Queues: I	Definition arr	
	ations (Insert, delete and display), Circular Queue		
	eues (Insert, delete and display), Priority Queues(-	
display). Programming exa		insert, delete	and
uispiay). Hogramming exa	UNIT-IV		10 Hrs.
Linked Lists: Definition re	epresentation of linked lists in memory, Linked li	st operations:	
	eletion. Doubly linked lists in memory, Enneed in	-	•
	ersing, searching, insertion, and deletion). Imp		
	ist. Programming Examples.	iementation o	1 Stuck and
PRACTICAL COMPONE			
FRACTICAL COMPONE	INT OF IFCC		
Suggested: Simulation/Mode	eling/Design/Verification/Hardwar Boards/etc.(p	veferably o	open
sources)	ening Designi vernieution nuruwur Dourds, etc. (p	lefeluoly (/pen
1. GCC C Compiler			
2 Turke C Commiler			
2. Turbo C Compiler			
Reference Books *			
	l Sartaj Sahni,"" Fundamentals of Data Structure	s in C , Univ	versities
Press, 2 nd Edition,			I
e	an,"" A Pseudo-code approach with C"", Cengag	e Learning, 2 ^r	10
Edition,2014			
3. Seymour Lipschut	z, Schaum's Outlines, "" Data Structures"", McG	iraw Hill,	
Revised 1 st Edition		,	
	zan and Richard F. Gilberg, "" Computer Science	e A Structured	l
Programming App	proach Using C ^{***} , Thomson, 2 nd Edition.		

Credits: 04

SUBJECT CODE:

A M Tenenbaum, "" Data Structures using C"", PHI,1989.
 Robert Kruse, "" Data Structures and Program Design in C"", PHI, 2nd edition, 1996.

Web links and Video Lectures (e-Resources):

- Data Structures and Algorithm Jenny's Lectures CSIT https://www.youtube.com/playlist?list=PLdo5W4Nhv31bbKJzrsKfMpo_grxuL l8LU
- 2. https://archive.nptel.ac.in/noc/courses/noc18/SEM1/noc18-cs25/

Course Outcomes**

After completion of the course student will be able to

- 1. Demonstrate the concepts of various types of data structures, operations and algorithms,
- 2. Write the C programs to demonstrate the concepts different data types.
- 3. Analyze the performance of Stack, Queue, Lists and Searching and Sorting techniques.
- **4.** Write the C programs for all the applications of data structures.
- 5. To solve real world problems by applying data structure concepts.

* Books to be listed as per the format with decreasing level of coverage of syllabus ** Each CO to be written with proper action word and should be assessable and quantifiable

Course Outcomes	Programme Outcomes (POs) Program Specific Outcomes (PSOs) Outcomes (PSOs)														
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	0	0	0	2	1	0	0	0	0	1	2	0	2
CO2	3	2	0	0	0	1	1	0	0	0	0	2	2	0	2
CO3	3	3	0	0	0	1	1	0	0	0	0	3	2	0	2
CO4	3	2	0	0	0	1	2	0	0	0	0	3	2	0	2

		02 - Credits (2: 0 : 0)
Hours / Week : 02	BIOLOGY FOR ENGINEERS/ BIOINSPIRATION FOR ENGINEERS	CIE Marks : 50
Total Hours : 26	DIOINSI INATION FOR ENOINEERS	SEE Marks : 50
	UNIT-I	06 Hrs.
NATURE BIOINSPIRE	D MATERIALS AND MECHANISMS	
mimicking nature. Human perflourocarbons (PFCs). applications.	on, Alliance between Engineering and Biol Blood substitutes-hemoglobin based oxyg Artificial Intelligence for disease diag tions, Nanobiomolecules in medical science,	gen carriers (HBOCs) and nosis. Bioichips & their
	UNIT-II	06 Hrs.
		(ultrasonography, sonars),
aircrafts), Lotus leaf effect (Velcro), Shark skin (Fricti	aic cells, bionic leaf), Respiration (MFC (Super hydrophobic and self-cleaning surfact on reducing swimsuits), Kingfisher beak (B	s), Bird flying (GPS and es), Gecko Feet, Plant burrs
aircrafts), Lotus leaf effect	aic cells, bionic leaf), Respiration (MFC (Super hydrophobic and self-cleaning surface)	s), Bird flying (GPS and es), Gecko Feet, Plant burrs
aircrafts), Lotus leaf effect (Velcro), Shark skin (Fricti LED.	aic cells, bionic leaf), Respiration (MFC (Super hydrophobic and self-cleaning surface on reducing swimsuits), Kingfisher beak (B	s), Bird flying (GPS and es), Gecko Feet, Plant burrs ullet train), Fire fly

UNIT-IV

TRENDS IN BIOENGINEERING

Bio printing techniques and materials, 3D printing of ear, bone and skin. 3D printed foods, electrical tongue and electrical nose in food science, DNA origami and Bio computing, Bio imaging and Self-healing Bio concrete (based on bacillus spores, calcium lactate nutrients and bio mineralization processes) and Bioremediation and Bio mining via microbial surface adsorption

(removal of heavy metals like Lead, Cadmium, Mercury, Arsenic). Bio-bleaching.

Reference Books

- 1. Human Physiology, Stuart Fox, Krista Rompolski, McGraw-Hill eBook. 16th Edition, 2022.
- 2. Biology for Engineers, Thyagarajan S., Selvamurugan N., Rajesh M.P., Nazeer R.A., Thilagaraj W., Barathi S., and Jaganthan M.K., Tata McGraw-Hill, New Delhi, 2012
- 3. Biology for Engineers, Arthur T. Johnson, CRC Press, Taylor and Francis, 2011
- 4. Biomedical Instrumentation, Leslie Cromwell, Prentice Hall 2011
- 5. Biology for Engineers, Sohini Singh and Tanu Allen, Vayu Education of India, New Delhi, 2020.
- 6. Biomimetics: Nature-Based Innovation, Yoseph Bar-Cohen, 1st edition, CRC Press, 2012
- 7. Bio-Inspired Artificial Intelligence: Theories, Methods and Technologies, D. Floreano and C. Mattiussi, MIT Press, 2008.
- 8. Bioremediation of heavy metals: bacterial participation, by C R Sunilkumar, N GeethaA C Udayashankar Lambert Academic Publishing, 2019.
- 9. 3D Bioprinting: Fundamentals, Principles and Applications by Ibrahim Ozbolat, Academic Press, 2016.
- 10. Electronic Noses and Tongues in Food Science, Maria Rodriguez Mende, Academic

Press, 2016.

Web links and Video Lectures (e-Resources)

- VTU EDUSAT / SWAYAM / NPTEL / MOOCS / Coursera / MIT-open learning resource
- https://nptel.ac.in/courses/121106008
- https://freevideolectures.com/course/4877/nptel-biology-engineers-other-non-biologists

- https://ocw.mit.edu/courses/20-020-introduction-to-biological-engineering-design-spring-2009.
- https://ocw.mit.edu/courses/20-010j-introduction-to-bioengineering-be-010j-spring-2006.
- https://www.coursera.org/courses?query=biology.
- https://onlinecourses.nptel.ac.in/noc19_ge31/preview.
- https://www.classcentral.com/subject/biology.
- https://www.futurelearn.com/courses/biology-basic-concepts.

Course Outcomes

After completion of the course student will be able to

- 1. Corroborate the concepts of biomimetics for specific requirements.
- 2. Elucidate the basic biological concepts via relevant industrial applications and case studies.
- 3. Evaluate the principles of design and development, for exploring novel bioengineering projects.
- 4. Think critically towards exploring innovative bio based solutions for eco friendly and socially relevant problems.

Course Outcomes	Programme Outcomes										amme Sp Dutcome				
	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2	PSO3
CO 1	3		2	1		3						1			
CO 2	3	2	1	1		3						1			
CO 3	3		3	1		3						1			
CO 4	3		1	2		3	3					1			

Why Biology for Engineers -

For engineers, understanding the principles of biology is important because it:

Aim - Biology for Engineers allows adaptation of the sciences by looking at ideas, theories and practices that already exist in nature. Biological engineers aim to mimic existing biological systems or modify them to replace, enhance or otherwise improve upon current engineering problems.

Taught from an engineering perspective

- Nature as the engineer
- Evolution as the design tool
- Engineering analogies
- 1. Provide students with an opportunity to collaborate in the learning process and develop critical thinking skills.
- 2. Enables the design of biocompatible materials and devices.
- 3. Helps in developing new medical technologies.
- 4. Facilitates the creation of sustainable energy systems.
- 5. Supports the development of bioremediation techniques for environmental cleanup.
- 6. Informs the development of advanced bio manufacturing processes.
- 7. Supports the advancement of personalized medicine.

22UMA300M		Mandatory - Credits (3:00)
Hours / Week : 03	Bridge Course Mathematics-I	CIE Marks : 50
Total Hours: 40		SEE Marks : 50

Differential Equations-1	10 Hrs.							
Introduction to Differential Equations: Ordinary differential equations of first or								
separable, Homogeneous. Exact form and reducible to exact differential equations- Integ	rating factors							
on $1/N (\partial M/\partial y - \partial N/)$ and $1/M (\partial N/\partial x - \partial M/\partial y)$. Linear and Bernoulli's equation.								
(RBT Levels: L1, L2 and L3)								
Differential Equations-2	10 Hrs.							
Introduction to Higher Order Differential Equations: Second and higher order linear	ODE"s with							
constant coefficients-Inverse differential operator, method of variation of parameters (se	cond order);							
Cauchy"s and Legendre homogeneous equations.								
(RBT Levels: L1, L2 and L3)								
Partial differentiation	10 Hrs.							
Introduction to function of several variables: Partial derivatives; Euler"s theorem - pro-	oblems.							
Total derivatives-differentiation of composite functions. Jacobeans-problems.								
(RBT Levels: L1, L2 and L3)								
Integral Calculus and Beta, Gamma functions10 Hrs.								
Introduction to Multiple integrals: Evaluation of double and triple integrals. Area bour	nded by the							
curve.								
Introduction to Beta and Gamma functions: Definitions, Relation between beta and g	amma							
functions-problems.								
(RBT Levels: L1, L2 and L3)								
References:								
1. Maurice D weir, Joel Hass and Frank R. Giordano, "Thomas calculus", Pearson, e edition, 2011.	eleventh							
2. B.S. Grewal : Higher Engineering Mathematics, Khanna Publishers, 44 th Edition,	2017.							
3. B. V. Ramana: "Higher Engineering Mathematics" 11 th Edition, Tata McGraw-Hi	11, 2010.							
 Erwin Kreyszing"s Advanced Engineering Mathematics volume1 and volume1I,w Pvt.Ltd.,2014. 	viley India							

Course Objectives:

This course will enable students

- 1. Used (ODE"S) to describe and model various phenomenons in Physics, Engineering, Biology, Economics and other scientific disciplines.
- 2. To formulate mathematical equations that capture the behavior and relationships of the variables involved.
- 3. Can better understand the behavior of multivariable functions, solve optimization problems, analyze physical systems, and develop advanced mathematical techniques for various applications.
- 4. Gain tools and techniques necessary to analyze accumulated quantities, calculate areas and volumes optimize functions, model physical systems.
- 5. To provide (beta and Gamma functions) valuable tools in diverse areas of Engineering.

Course Outcomes:

At the end of the course the student should be able to,

- 1. Obtain solutions that describe the behaviour of the unknown function/functions involved.
- 2. Find the general solution, which is a family of functions that satisfy the equation.
- 3. Provide a powerful framework for quantifying and analyzing quantities that depend on multiple variables.
- 4. Provide essential tools for solving problems, analyzing data and understanding mathematical and physical phenomena.

Assessment	Marks	Weightage
CIE-I	40	20
CIE-II	40	20
Assignments/ Quizzes/Case Study/ Course Project/Term Paper/Field Work	10	10
SEE	100	50
Total	150	100

Evaluation Scheme:

Question paper pattern for CIE-I and CIE-II:

- 1. Question paper consists Part-A and Part-B. Part A is compulsory, it consists of short answer questions of 1 or 2 marks, covering two units (no multiple choice questions and No true or false questions).
- 2. In Part-B, any TWO full questions are to be answered.

Number of questions / Maximum marks	Sub divisions	Contents
Four questions of 15 marks (Solve any two)	Sub divisions shall not be mixed with Differential Equations-I & Differential Equations-II	Differential Equations-1
	Sub divisions shall not be mixed with Differential Equations-I & Differential Equations-II	Differential Equations-2
Four questions of 15 marks (Solve any two)	Sub divisions shall not be mixed with Integral Calculus , Beta, Gamma functions & Partial Differentiation	Partial differentiation
	Sub divisions shall not be mixed with Integral Calculus ,Beta, Gamma functions & Partial Differentiation	Integral Calculus and Beta, Gamma functions

Question paper pattern for SEE:

- 1. Question paper consists Part-A and Part-B. Part A is compulsory, it consists of short answer questions of 1 or 2 marks, covering entire syllabus (no multiple choice questions and No true or false questions, 50% of questions must be L3 and L4 level).
- 2. In Part-B total eight questions, any FOUR full questions are to be answered. Uniformly covering the entire syllabus.
- 3. Each question carries 20 marks and should not have more than four subdivisions.
- 4. Sketches, figures and tables if any should be clearly drawn, as the same is scanned for printing.
- 5. The question paper should contain all the data / figures / marks allocated, with clarity.
- 6. paper should contain all the data / figures / marks allocated, with clarity.

IV Semester Syllabus

22UMA401C		03 - Credits ($(3:0:\overline{0})$							
Hours / Week : 03	Statistics and Probability Distributions CIE Marks : 50									
Total Hours : 40		SEE Marks :	50							
	UNIT – I		10 Hrs							
.	ethod of least squares: $y \Box a \Box bx$, $y \Box ab^x$ the rank correlation coefficient and regression. [.3]	$, y \square a \square bx \square$	cx^2 .							
	UNIT – II Probability		10 Hrs							
· 1	probability, multiplication rule, Baye"s rule. Disc by function, Cumulative distribution function, P L3)									
U	NIT – III Probability distributions		10 Hrs							
Joint probability distribution (RBT Levels: L1, L2 and)	L3)	cept of joint pro	bability,							
	UNIT – IV Markov chains		10 Hrs							
· · · · · ·	rectors, Stochastic Matrices, Fixed Points and I nsition probabilities, stationary distribution of L3)	0								
	or Engineers by Steven C Chapra & Raymond P	Canale								
	athematics by Dr. B.S. Grewal, Khanna Publishe									
 Advanced Engineering Ram Nagar, New Delh 	Mathematics By H. K. Das, S. Chand & compa	ny Ltd.								
India pvt.ltd 2 nd edition	stic processes by Roy D. Yates and David J. Goo a 2012.	•								

6. Theory and problems of probability by Seymour Lipschutz (Schaum"s Series).

Course Objectives:

- 1. To apply the knowledge of Statistics in various Engineering fields.
- 2. To be acquired knowledge about predictions preferably on the basis of mathematical equations.
- 3. To be understand the principal concepts about probability.

Course Outcomes:

After completion of the course the students shall be able to,

- 1. Apply the least square sense method to construct the specific relation for the given group of data.
- 2. Solve problems on correlation and regression
- 3. Apply the concepts of probability
- 4. Apply the concepts of probability distributions
- 5. Apply the concept of Markov Chain for commercial and industry purpose.

Evaluation Scheme:

Assessment	Marks	Weightage
CIE-I	40	20
CIE-II	40	20
Assignments/ Quizzes/Case Study/ Course Project/Term Paper/Field Work	10	10
SEE	100	50
Total	190	100

Question paper pattern for CIE-I and CIE-II:

Question paper consists Part-A and Part-B. Part A is compulsory, it consists of short answer questions of 1 or 2 marks, covering Unit-I and Unit-II (no multiple choice questions and No true or false questions).

CIE	Number of questions / Maximum marks	Sub divisions	Covering entire unit
Ι	Two questions of 15 marks (Solve any one)	Sub divisions shall not be mixed within the unit	Unit-I
	Two questions of 15 marks (Solve any one)	Sub divisions shall not be mixed within the unit	Unit-II
II	Two questions of 15 marks (Solve any one)	Sub divisions shall not be mixed within the unit	Unit-III
	Two questions of 15 marks (Solve any one)	Sub divisions shall not be mixed within the unit	Unit-IV

In Part-B, four questions are to be set as per the following table.

Question paper pattern for SEE:

- 1. Question paper consists Part-A and Part-B. Question number 1 is compulsory, it consists of short answer questions of 1 or 2 marks, covering entire syllabus (no multiple choice questions and No true or false questions, 50% of questions must be L3 and L4 level).
- 2. In Part-B total of eight questions with two from each unit; with internal choice to be set uniformly covering the entire syllabus.
- 3. Each question carries 20 marks and should not have more than four subdivisions.
- 4. In Part-B, any FOUR full questions are to be answered choosing at least one from each unit.
- 5. Sketches, figures and tables if any should be clearly drawn, as the same is scanned for printing.

The question paper should contain all the data / figures /

SUBJECT CODE: 22UEC402C	S' 1 5 4	Credits: 04
L:T:P:S – 3:2:0:2	Signals and Systems	CIE Marks: 50
Total Hours/Week: 05		SEE Marks: 50

UNIT-I	10 Hrs
Introduction to Continuous-time and Discrete-time Signals and Systems: Definition of	U
and systems, sampling, classification of signals, elementary signals, basic operations on s	0
interconnection of systems and operations, classification of systems and properties of systems	tems
Self Study Component: Introduction to time variant systems	10.11
UNIT-II	10 Hrs
Time domain representation of LTI systems: Convolution sum, convolution integral, in	mpulse
response representation of systems, properties of impulse response. Self Study Component: Introduction to fast convolution-Winograd Algorithm	
UNIT-III	10 Hrs
Fourier and inverse Fourier transformation of signals: Introduction to complex sinusc	
and their use in Fourier representation of periodic signals, continuous time Fourier seried discrete time Fourier series (DTFS), continuous time Fourier transform (CTFT), discrete t transform (DTFT), inverse discrete Fourier transformation (IDTFT), properties of DTFT, Self Study Component: Basics of discrete Cosine transform	ies (CTFS), time Fourier
UNIT-IV	10 Hrs.
transfer function, stability and causality, solution of difference equations using Z-transform Self Study Component: Basics of Hilbert transform Practical Component of Professional Core Course (PCC) "Signals and Systems" Suggested Simulation/Modeling/Design/Verification/Hardware Boards/etc, tools to b 1. MATLAB	
2. Python	
3. SCILAB.	
Reference Books *	
1. Simon Haykin and Barry Van Veen, "Signals and systems", Edition 2, John Wiley Indi 2008.	ian Ed,
 Alan V. Oppenheim, Alan S. Willsky and Syed Hamid Nawab, "Signals and Systems", PHI, 2014. 	, Edition 2,
Web links and Video Lectures (e-Resources):	
1. https://nptel.ac.in/courses/117101055	

- 2. https://www.digimat.in/nptel/courses/video/108104100/L02.html
- 3. https://nptel.ac.in/courses/117104074

Course Outcomes**

After completion of the course student will be able to

- 1. Perform different operations on signals and systems.
- 2. Characterize different class of signals and systems in time and transform domain
- 3. Compute system response to arbitrary inputs using time and frequency domain tools.
- 4. Explore the concepts of signals and systems through implementation using MATLAB/SCILAB/Python.

List of Experiments under Self Study Component

Sl. No.	Experiments
1	Generation of Signals: Periodic, Aperiodic, Discrete, Continuous and Complex Signals
2	Operation on discrete and continuous time signals: Amplitude scaling, Time Scaling, Time shift
3	Determination of frequency and time period of continuous time and discrete time periodic signals
4	Response of LTI systems using convolution sum and convolution integral
5	LTI system classification using impulse response.
6	Verification of sampling theorem and Parsaval's theorem
7	Fourier series of continuous time and discrete time periodic signals
8	Fourier transform of continuous time and discrete time periodic signals
9	Verification of time shift and frequency shift properties of DTFT
10	Computation of inverse DTFT
11	Computation of Z-Transform and plotting ROC
12	Solution of difference equations using Z-Transform

Course Outcomes	Programme Outcomes (POs)											gram Spe comes (P			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	1	0	0	0	0	0	0	0	0	0	3	0	0
CO2	3	3	1	0	0	0	0	0	0	0	0	0	3	0	0
CO3	3	3	1	0	0	0	0	0	0	0	0	0	3	0	0
CO4	3	2	1	0	0	0	0	0	0	0	0	0	3	0	0

SUBJECT CODE: 22UEC403C		Credits: 04
L:T:P:S-3:0:2:3	Analog Circuit Design	CIE Marks: 50
Total Hours/Week: 03		SEE Marks: 50

UNIT-I	10 Hrs
MOS Differential Amplifiers: Introduction to Current Mirror - Basic, Wilson and Casc	
Mirror, MOSFET Basic Differential Pair, Large Signal and Small Signal Analysis of	Differential
Amplifier, Differential Amplifier with Active Load, Differential Amplifier Frequency Re	sponse.
MOS Feedback Amplifiers: Introduction to Feedback, Basic Feedback Concepts, Ideal	Feedback
Topologies - Series - Shunt , Shunt - Series, Series - Series, Shunt - Shunt Amplifiers.	
UNIT–II	10 Hrs
Operational Amplifier and Applications: Introduction to op-amp, DC and AC amplifie	ers, op-amp
as summing, scaling, and averaging amplifiers, differential amplifiers, instrumentation an	nplifier, I/V
and V/I converter, precision rectifier, peaking amplifier	
UNIT–III	10 Hrs
Comparators and Waveform Generators: Comparator and its applications - Schr	nitt trigger,
Oscillators-Barkhausen Criterion ,Phase-shift and Wein-bridge oscillators, Square, Tri-	angular and
Saw- tooth wave function generators	C
Active filters: Filter classifications: First and second order Low-pass and High pass fil	lter designs.
Band pass filter, band reject, all pass filter	U ,
UNIT-IV	10 Hrs.
Data Converters: Sample-and-hold circuits, DAC: Basics, D/A conversion using binary	
resistors and R-2R resistors, ADC: DAC based ADC, Successive approximation ADC.	weighted
Special Function ICs: IC 555 timer, block diagram, Astable and Monostable operations and	nd
	liu
applications.	
PLL: Block diagram, IC 565 pin diagram	
PRACTICAL COMPONENT OF IPCC	
Suggested Simulation/Modeling/Design/Verification/Hardware Boards/etc, tools to b	oe used.
Demonstrate the operation of the following circuits using suitable simulation software (Op	
such as Proteus, Simulink, eSim, Psim)	
Reference Books *	
Reference Dooks	
1. Ramakant A Gayakwad, "Op-Amps and Linear Integrated Circuits", 4thEdition,	
Pearson Education, 2018.	•.
2. Adel S. Sedra, Kenneth C. Smith and Arun N. Chandorkar, "Microelectronic Circ	
Theory and Applications", 7th Edition, Oxford University Press, New York, 2014	
3. J. D. Roy Choudhury, "Linear Integrated Circuits", 5th Edition, New-Age Internation	tional
Publishers, New Delhi, 2018.	
Web links and Video Lectures (e-Resources):	
1. https://nptel.ac.in/courses/108/105/108105158/	
2 https://archive.nptel.ac.in/courses/108/108/108108111/	

- 2. https://archive.nptel.ac.in/courses/108/108/108108111/
- $3. \ \underline{https://spoken-tutorial.org/tutorial-search/?search_foss=eSim \& search_language=English}$
- 4. <u>https://psim.software.informer.com/11.1/</u>

Course Outcomes**

After completion of the course student will be able to

1. Analyze the different active biasing techniques and MOSFET-based differential amplifiers and their frequency response characteristics.

2. Apply the feedback topologies and approximations in the design of amplifiers using op-amps

3. Design and analyze different waveform generators and filters using op-amps

4. Develop the skill to analyze data converter circuits using op-amps and multivibrators using 555 timer.

Sl. No.	Experiments
1	Design of Feedback Amplifiers for the given Specifications- Series -Shunt and Shunt-Shunt
	Feedback Amplifier.
2	Design and verification of summing, scaling and averaging, substractor circuits using op-amp.
3	Design and verification of Schmitt trigger for given specifications.
4	Design and verification of second order active low pass and high pass filters.
5	Design and verification of second order active band pass filter.
6	Design of Oscillators for the given Specifications - RC Phase shift Oscillator.
7	Design of Oscillators for the given Specifications – Wein bridge Oscillator.
8	Design and verification of integrator and differentiator for given specifications.
9	Design and verification of Schmitt trigger.
10	Generation of square wave using SE/NE 555 timer for given specifications.
11	Design and verification of monostable multivibrator for given specifications.
12	Convert the given digital signal in to analog signal using R-2R resistors.

Course Outcomes		Programme Outcomes (POs)							Program Specific Outcomes (PSOs)						
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	1	2	1	0	0	1	1	1	1	1	3	0	0
CO2	3	3	1	2	1	0	0	1	1	1	1	1	3	0	0
СОЗ	3	3	1	2	1	0	0	1	1	1	1	1	3	0	0
CO4	3	2	1	2	1	0	0	1	1	1	1	1	3	0	0

22UEC404C		Ci cuito: 04
L:T:P:S – 3:0:2:3	Analog and Digital Communication	CIE Marks: 50
Total Hours/Week: 03		SEE Marks: 50
	UNIT-I	10 Hrs
	and and carrier communication, time domain and	1 1
1 0	detection of Amplitude Modulation (AM) waves	
DSB-SC modulation: Tim SC modulated waves.	e and frequency domain representation, generation	on and detection of DSB
	main representation of SSB signal, generation an	nd detection of SSB
	are Amplitude Modulation (QAM).	
	ation: Frequency domain representation, generat	ion and detection of
VSB, comparison of amplitu	ide modulation techniques, superheterodyne rece	eiver.
	UNIT-II	10 Hrs
8	ncept of angle modulation, relation betw	een frequency
	lwidth of angle modulated wave. and indirect methods, PLL, demodulation of FM.	nno amphasis and
de-emphasis, FM radio	and indirect methods, FLL, demodulation of FM	, pre-emphasis and
de empliasis, i wi ideio	UNIT-III	10 Hrs
Digital Communication:	Model of digital communication systems Sam	
-	on-uniform quantization, Quadrature sampling	
	from its samples, signal distortion in sampling. L	Line codes, unipolar, pola
and Manchester codes and	their power spectral densities.	
	UNIT-IV	10 Hrs.
0	hniques: Digital Modulation formats, Cohe	•
1 • • • •	K), Probability of error for each ASK, PSK, F	1
	SK, (without derivation of probability of error	equation). Non-coheren
binary modulation techniqu		
	NT OF IPCC (Number of Experiments should	d be in the range
of 10 to 15)		
Suggested Simulation/M	odeling/Design/Verification/Hardware Board	ds/etc. (preferably
open sources)	0 0	Ĩ,
1. Simulation using M	atlab/Scilab	
2. Verification using H	Iardware components	
Reference Books *		
1. B. P. Lathi"Modern Oxford University,	n Digital and Analog Communication Systems", 2006.	3 rd Edition,
•	Electronic Communication Systems", 3 rd Edition,	
		, Tata McGraw

Credits: 04

SUBJECT CODE:

- 3. B.P.Lathi"CommunicationSystems", 3rdEdition, B.S.Publications, 2009.
- 4. SimonHaykin"CommunicationSystems", 3rdEdition, JohnWiley and Sons, 2005.
- 5. Simon Haykin, "Digital communications", John Wiley, Edition 2014.

- 6. John. G. Proakis, & Masoulsalehi" Fundamental of Communication System" Pearson Education, Edition 2014.
- 7. Bernard Sklar and Prabitrakumary Ray, "Digital Communication Fundamentals and Applications", Pearson Publications, 2010.
- 8. K. Sam Shanmugan, "Digital and Analog Communication Systems", John Wiley & Sons,2006.

Web links and Video Lectures (e-Resources):

- 1. <u>https://spoken-tutorial.org/tutorial-search/?search_foss=Scilab&search_language=English</u>
- 2. www.mathworks.com.

Course Outcomes**

After completion of the course student will be able to

- 1. Demonstrate generation and detection of analog and digital modulation techniques.
- 2. Explain the principles and applications of AM, FM and PM in various communication systems.
- 3. Apply various digital modulation techniques for signal transmission.
- 4. Distinguish various line coding schemes used for digital data transmission.
- 5. Distinguish different coherent and non-coherent digital modulation techniques

Sl. No.	Experiments
1	To construct an amplitude modulator circuit to satisfy under modulation condition and generate amplitude modulated signal and simulate amplitude modulated wave in time domain using Matlab/Scilab
2	To generate DSB-SC AM signal using balanced modulator. Simulate DSB-SC AM modulator in time domain using Matlab/Scilab
3	Simulate FM modulated wave in time domain using Matlab/Scilab
4	To study PCM of a given input signal using Matlab/Scilab
5	To study DPCM of a given input signal using Matlab/Scilab.
6	To study Delta Modulation of a given signal using Matlab/Scilab.
7	Perform pre-emphasis and de-emphasis usingMatlab/Scilab.
8	Perform given signal conversion using different line coding techniques.
9	To study different coherent binary modulation techniques (ASK, FSK, PSK)and simulate using Matlab/Scilab.

10	To study different non-coherent binary modulation techniques (FSK and DPSK) and simulate
	using Matlab/Scilab.
11	Design and verification of Modulation and demodulation AM signal.
12	Design and verification of Modulation and demodulation FM signal.
13	Realization of pre-emphasis and de-emphasis circuit.
14	Verification of sampling theorem .
15	Generation and detection of ASK ,FSK, and PSK signal.

Course Outcomes		Programme Outcomes (POs)							Program Specific Outcomes (PSOs)						
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
	3	3	3	2	2	1	1	1	2	1	0	1	3	0	0
CO2															
	3	3	3	2	2	1	1	1	2	1	0	1	3	0	0
CO3	3	3	3	2	2	1	1	1	2	1	0	1	3	0	0
CO4	3	3	3	2	2	1	1	1	2	1	0	1	3	0	0
CO5															
	3	3	3	2	2	1	1	1	2	1	0	1	3	0	0

SUBJECT CODE: 22UEC405C(PCC)		Credits: 03
L:T:P - 3:0:0	ARM Microcontroller	CIE Marks: 50
Total Hours/Week: 03		SEE Marks: 50

Course	Objectives **
1.	Students will Studies the architectural inheritance of the ARM architecture,
2.	understanding of its development in Assembly Language Programming. Studies utilizing ARM development tools to write and debug assembly
	language programs, along with deep comprehension of the ARM programmer's model.
3.	Students learn writing and executing simple ARM assembly language
	programs, incorporating data processing, data transfer, and control flow instructions effectively.
4.	Students develop skill in using the ARM instruction set to perform various
	operations, including branching, data processing, and coprocessor instructions.
5.	Students learn implementing ARM architecture support for high-level
	languages, including working with data types, floating-point operations,
	expressions, conditional
	statements functions and memory management

statements, functions, and memory management.

Course Ou	tcomes**
After com	pletion of the course student will be able to
1.	Analyze and explain the architectural inheritance of the ARM architecture, demonstrating acomprehensive understanding of its development in Assembly
	Language Programming.
2.	Demonstrate proficiency in utilizing ARM development tools to write and debug assemblylanguage programs, showing a deep comprehension of the
	ARM programmer's model.
3.	Exhibit competence in writing and executing simple ARM assembly language programs, incorporating data processing, data transfer, and control flow instructions effectively.
4.	Demonstrate skill in using the ARM instruction set to perform various operations, includingbranching, data processing, and coprocessor instructions.
5.	Attain proficiency in implementing ARM architecture support for high- level languages, including working with data types, floating-point operations, expressions, conditional statements, functions, and memory management.

	UNIT-I	10 Hrs
progra ARM	RM Architecture : The Acorn RISC Machine, Architectural inheritance, The ARM mmer's model, ARM development tools, Example and exercises. Assembly Language Programming: Data processing instructions, Data transfer ctions, Control flow instructions, Writing simple assembly language programs, Example ses	es and
	UNIT–II	10 Hrs
Link (proces word a Multip genera	RM Instruction Set : Introduction, Exceptions, Conditional execution, Branch and B, BL), Branch, Branch with Link and exchange (BX, BLX), Software Interrupt sing instructions, Multiply instructions, Count leading zeros (CLZ - architecture v5T on unsigned byte data transfer instructions, Half-word and signed byte data transfer instructions, Swap memory and register instructions (SWP), Status 1 register transfer instructions, General register to status register er instructions.	(SWI), Data only), Single instructions,
	UNIT-III	10 Hrs
Copro Archi Floatin	RM Instruction Set continued: Coprocessor instructions, Coprocessor data operation cessor data transfers, Coprocessor register transfers, Example and exercises. tectural Support for High-Level Languages: Abstraction in software design, Data type ng-point data types, The ARM floating-point architecture, Expressions, Conditional stat, Functions and procedures, Use of memory, Run-time environment, Examples and exercises.	pes, tements,
	UNIT–IV	10 Hrs.
branch single	Thumb Instruction Set : The Thumb bit in the CPSR, The Thumb programmer's monomeries in the instructions, Thumb software interrupt instruction, Thumb data processing instruction register data transfer instructions, Thumb multiple register data transfer instruction point instruction, Thumb implementation, Example and exercises.	ons, Thumb
Sugges open so		ably
2.	Develop and test Program using ARM7TDMI/LPC2148. Conduct the experiments on an ARM7TDMI/LPC2148 evaluation board using evalua version of Embedded 'C' & Keil Uvision-4 tool/compiler.	tion
Refere	nce Books *	
1.	Steve Furber, "ARM System on Chip Architecture", Edition 2, Pearson Education Lin 2000.	nited,
2. 3.	Andrew N. Sloss, Dominic Symes and Chris Wright, "ARM System Developer Guide", Morgan Kaufmann Publishers, An imprint of Elsevier, 2004. Joseph Yiu, "The definitive guide to the ARM CORTEX-M3", Newnes, Second edition	
4.	William Hohl and Christopher Hinds, "ARM Assembly Language Fundamentalsand Techniques", second edition, CRC Press, 2015.	

- 5. Trevor Martin, "The Insider"s Guide Philips ARM®7 based Microcontrollers An Engineer"s Introduction To The LPC2100 Series" Hitex (UK) Ltd.,2005.
- 6. Gibson, ARM Assembly Language an Introduction, Edition 2, 2007.

Web links and Video Lectures (e-Resources):

- 1. https://archive.nptel.ac.in/courses/106/105/106105193/
- 2. https://youtu.be/gPBsoOefyUk
- 3. https://youtu.be/R8bH_pary3Y
- 4. https://youtu.be/-Qmne2YuwDI
- 5. <u>https://pdfkeys.com/download/1304945-</u> <u>Arm_Microcontroller_Muhammad_Ali_Mazidi.pdf</u>

Course Outcomes		Programme Outcomes (POs)											Program Specific Outcomes (PSOs)					
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3			
CO1																		
	3	3	3	1	3	1	1	1	2	1	0	1	0	3	0			
CO2																		
	3	3	3	1	3	1	1	1	2	1	0	1	0	3	0			
CO3																		
	3	3	3	1	3	1	1	1	2	1	2	1	0	3	0			
CO4	3	2	3	1	3	1	1	1	2	1	2	1	0	3	0			
CO5																		
	3	2	2	1	3	1	1	1	2	1	1	2	0	3	0			

Course Title: ARM Micro	controller Lab(PCC)	Course Code: 22UEC406L
Credits: 1.0		Contact Hours: 3 Hrs/Week
CIE Marks: 50	SEE Marks: 50	Total Marks: 100

Course Objectives:

- To have hands-on experience in using ARM7TDMI/LPC2148. family microcontrollers.
- To provide practical knowledge of ARM7TDMI/LPC2148. assembly language programming.
- To have exposure in using Keil compiler and embedded C programming.
- To understand different inbuilt peripherals in ARM7TDMI/LPC2148.family and their interfacing.
- To encourage the students in building embedded applications.

Course Outcomes:

- Able to get fundamental concepts of ARM7TDMI/LPC2148. microcontroller from practical point of view.
- Able to write efficient programs in assembly level language of the RM7TDMI/LPC2148. microcontroller.
- Able to carry out interface between the ARM7TDMI/LPC2148.microcontroller and peripheral devices so that they can design and develop a complete microcontroller based systems (projects).
- Able to develop the ability to use embedded C language to perform a defined task.

Suggested Simulation/Modelling/Design/Verification/Hardware Boards/etc. (preferably open sources):

- Develop and test Program using ARM7TDMI/LPC2148.
- Conduct the experiments on an ARM7TDMI/LPC2148 evaluation board using evaluation version of Embedded 'C' & Keil Uvision-4 tool/compiler.

Sl. No.	Experiments
	Part-A
1	Write a program to multiply two 16 bit binary numbers.
2	Write a program to find the sum of first 10 integer numbers.
3	Write a program to find factorial of a number.
4	Write a program to add an array of 16 bit numbers and store the 32 bit result in internal RAM
5	Write a program to find the square of a number (1 to 10) using look-up table.
6	Write a program to find the largest/smallest number in an array of 32 numbers.
7	Write a program to arrange a series of 32 bit numbers in ascending/descending order.
8	Write a program to count the number of ones and zeros in two consecutive memory locations.
	Part-B

9	Display "Hello World" message using Internal UART.
10	Interface and Control a DC Motor.
11	Interface a Stepper motor and rotate it in clockwise and anti-clockwise direction.
12	Determine Digital output for a given Analog input using Internal ADC of ARM controller.
13	Interface a DAC and generate Triangular and Square waveforms.
14	Interface a 4x4 keyboard and display the key code on an LCD.
15	Demonstrate the use of an external interrupt to toggle an LED On/Off.
16	Display the Hex digits 0 to F on a 7-segment LED interface, with an appropriate delay in between.

Course Outcomes		Programme Outcomes (POs)										Program Specific Outcomes (PSOs)					
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
CO1																	
	3	3	3	1	3	1	1	1	2	1	0	1	0	3	0		
CO2																	
	3	3	3	1	3	1	1	1	2	1	0	1	0	3	0		
CO3																	
	3	3	3	1	3	1	1	1	2	1	2	1	0	3	0		
CO4	3	2	3	1	3	1	1	1	2	1	2	1	0	3	0		
CO5	5	2	5	1	5	1	1	1	2	1	2	1	U	5	0		
	3	2	2	1	3	1	1	1	2	1	1	2	0	3	0		

22UHS424C	TINING TO CAT THIS CAN YAT TING T	Credit: 01
L:T:P - 1 : 0: 0	– UNIVERSAL HUMAN VALUES-II	CIE Marks: 50
Total Hours/Week:01		SEE Marks: 50
	UNIT-I	(4 Hrs)
Understanding Value Edu	Education: Right Understanding; Relationslucation; Self-exploration as the Process for Va- the Basic Human Aspiration-Current Scenario ar	alue Education, Continuous
	UNIT–II	(4 Hrs)
Body, distinguishing betw	Being: Understanding Human being as the Co-e even the Needs of the Self and the Body, The Body n the Self, Harmony of the Self with the Body, Pro-	as an Instrument of the Self,
	UNIT-III	(4 Hrs)
Feelings, Justice in Huma the Universal Human Orde	Foundational Value in Relationship; 'Respect' – as n-to-Human Relationship; Understanding Harmon er; Understanding Harmony in the Nature; Intercon- ong the Four Orders of Nature.	ny in the Society; Vision for
	UNIT–IV	(3 Hrs)
Implications of the Holist	tic Understanding – a Look at Professional Eth	ics
Definitiveness of (Ethical)	Human Conduct; A Basis for Humanistic Education	
and Universal Human Ord Systems and Management	er; Competence in Professional Ethics; Holistic To Models; Strategies for Transition towards Value-	echnologies, Production
and Universal Human Ord	er; Competence in Professional Ethics; Holistic Te	echnologies, Production
and Universal Human Ord Systems and Management Reference Books 1. R R Gaur, R Sangal Delhi, 2010.	er; Competence in Professional Ethics; Holistic Te	echnologies, Production based Life and Profession. Ethics", , Excel Books, New
and Universal Human Ord Systems and Management Reference Books 1. R R Gaur, R Sangal Delhi, 2010. 2. A. Nagaraj, Jeevan	er; Competence in Professional Ethics; Holistic To Models; Strategies for Transition towards Value- l, G P Bagaria, "Human Values and Professional E	echnologies, Production based Life and Profession. Ethics", , Excel Books, New arkantak, 1999.
 and Universal Human Ord Systems and Management Reference Books R R Gaur, R Sangal Delhi, 2010. A. Nagaraj, Jeevan A.N. Tripathi, Hum Annie Leonard, The 	er; Competence in Professional Ethics; Holistic To Models; Strategies for Transition towards Value- l, G P Bagaria, "Human Values and Professional E VidyaEkParichaya, Jeevan Vidya Prakashan, Ama an Values, New Age Intl. Publishers, New Delhi, Story of Stuff (Book), Simon & Schuster, 2011. and Gandhi, The Story of My Experiments with T	echnologies, Production based Life and Profession. Ethics", , Excel Books, New arkantak, 1999. 2004.
 and Universal Human Ord Systems and Management Reference Books R R Gaur, R Sangal Delhi, 2010. A. Nagaraj, Jeevan A.N. Tripathi, Hum <u>Annie Leonard</u>, The Mohandas Karamch Washington, DC. 19 	er; Competence in Professional Ethics; Holistic To Models; Strategies for Transition towards Value- l, G P Bagaria, "Human Values and Professional E VidyaEkParichaya, Jeevan Vidya Prakashan, Ama an Values, New Age Intl. Publishers, New Delhi, Story of Stuff (Book), Simon & Schuster, 2011. and Gandhi, The Story of My Experiments with T	echnologies, Production based Life and Profession. Ethics", , Excel Books, New arkantak, 1999. 2004.
 and Universal Human Ord Systems and Management Reference Books R R Gaur, R Sangal Delhi, 2010. A. Nagaraj, Jeevan A.N. Tripathi, Hum <u>Annie Leonard</u>, The Mohandas Karamch Washington, DC. 19 E. F Schumacher, S 	er; Competence in Professional Ethics; Holistic To Models; Strategies for Transition towards Value-I I, G P Bagaria, "Human Values and Professional E VidyaEkParichaya, Jeevan Vidya Prakashan, Ama an Values, New Age Intl. Publishers, New Delhi, Story of Stuff (Book), Simon & Schuster, 2011. nand Gandhi, The Story of My Experiments with T 948.	echnologies, Production based Life and Profession. Ethics", , Excel Books, New arkantak, 1999. 2004.
 and Universal Human Ord Systems and Management Reference Books R R Gaur, R Sangal Delhi, 2010. A. Nagaraj, Jeevan A.N. Tripathi, Hum <u>Annie Leonard</u>, The Mohandas Karamch Washington, DC. 19 E. F Schumacher, S Cecile Andrews, Slop 	ler; Competence in Professional Ethics; Holistic To Models; Strategies for Transition towards Value- I, G P Bagaria, "Human Values and Professional E VidyaEkParichaya, Jeevan Vidya Prakashan, Ama an Values, New Age Intl. Publishers, New Delhi, Story of Stuff (Book), Simon & Schuster, 2011. nand Gandhi, The Story of My Experiments with T 948.	echnologies, Production based Life and Profession. Ethics", , Excel Books, New arkantak, 1999. 2004. Fruth, Public Affairs Press of

 Pandit Sunderlal, Bharat Mein AngrejiRaj, Publications Division, M/O Information & Broadcasting, Govt. of India, 2016

10. Dharampal, Rediscovering India, Society for Integrated Development of Himalayas, 2003

- Gandhi, Mohandas K.Hind Swaraj or Indian Home Rule Ahmedabad, Nava jivan Pub. House, 1946.
- 12. India Wins Freedom, Maulana Abdul Kalam Azad, Orient Black Swan, 1988.
- 13. Romain Rolland, Gandhi, Romain Rolland (English), Srishti, 2000.

Course Outcomes:

Upon successful completion of the course, students will be able to:

CO1: Explore holistic vision of life - themselves and their surroundings.

CO2: Develop competence and capabilities for maintaining Health and Hygiene.

CO3: Analyse various problems in life, family, Society and in handling problems with Sustainable Solutions.

CO4: Apply values to their own self in different day-to-day settings in real life and in handling problems with sustainable solutions.

CO5: Adopt the value of appreciation and aspiration for excellence and gratitude for all.

Course Articulation Matrix

Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1							3	2	3			1			ĺ
CO2	-	-	-	-	-	3	3	1	1			1			
CO3	-	-		-	-	3	3	2	1	-		1		-	
CO4			-			2	2	3	2	-	-	1	-	-	
CO5								3				1			

22UM A	A400M	Bridge Course Mathematics-II	Credits – 0; Mandatory Course L-T-P:(3:0:0)
Hours /	/ Week : 03		CIE Marks : 50
Total H	Iours : 40		SEE Marks : 50
		Differential Calculus (10 Hrs.)	
betwee (withou		lculus, Polar curves - angle between the al equation. Taylor's and Maclaurin's s I L3)	
		Vector Differentiation (10 Hrs.)
interpre		ector fields. Gradient, directional derivational derivational vector fields- problems. l L3)	ve; curl and divergence-physical
		Laplace Transform (10 Hrs.)	
Shiftin		of Laplace Transform, Laplace Transform ntegral and division by t. Periodic function 1 L3)	-
		Inverse Laplace transforms (10 H	
Propert	ties, Convolution th	neorem-problems, Solutions of linear diffe	erential equations.
(RBT]	Levels: L1, L2 and	l L3)	
Refere	ences:		
1.	B.S. Grewal: High	er Engineering Mathematics, Khanna Pul	olishers, 44 th Edition, 2017.
2. 3.	Pvt.Ltd., 2014.	s Advanced Engineering Mathematics vol ential Equations by Earl D. Rainville and	
	-		-
4.	Erwin Kreyszing	s Advanced Engineering Mathematics, wi	lley India Pvt.Ltd., 2014.
Course	e Objectives:		
This co	ourse will enable st	udents to	
1.	Provide (Polar Cur Cartesian coordina	rves) an alternative way of representing fu te system.	unctions compared to the
2.	Analyze vector val	ued functions and understand the behavio	or of various physical quantities in

3. Simplify the process linear ordinary differential equations. It transforms the differential equations, which may be difficult to solve directly, into algebraic equations, making the problem more tractable.

Course Outcomes:

At the end of the course the student should be able to,

- 1. Use (polar curves) to model and analyse various physical phenomena, such as orbits of celestial bodies, antenna radiation patterns and fluid flow in circular systems.
- 2. Find the velocity and acceleration vectors of objects in motion.
- 3. Find applications in various fields of engineering, including control systems, circuit analysis, fluid dynamics, heat transfer and many more.
- 4. Solve differential equations, understand systems responses and gain insights into the behaviour of various engineering and physical systems in the time domain.

Assessment	Marks	Weight
		age
CIE-I	40	20
CIE-II	40	20
Assignments/ Quizzes/Case Study/ Course Project/Term Paper/Field Work	20	10
SEE	100	50
Total	200	100

Evaluation Scheme:

Question paper pattern for CIE-I and CIE-II:

1. Question paper consists Part-A and Part-B. Part A is compulsory, it consists of short answer questions of 1 or 2 marks, covering two units (no multiple choice questions and No true or false questions).

CIE	Number of questions /	Sub divisions	Contents		
	Maximum marks				
I	Four questions of 15 marks (Solve any two)	Sub divisions shall not be mixed with Differential equations-1 and Differential equations-2	Differential Equations-1		
		Sub divisions shall not be mixed with Differential equations-1 and Differential equations-2	Differential Equations-2		
II	Four questions of 15 marks (Solve any two)	Sub divisions shall not be mixed with Laplace Transform and Inverse Laplace transform	Laplace Transform		
		Sub divisions shall not be mixed with Laplace Transform and Inverse Laplace transform	Inverse Laplace Transform		

2. In Part-B, any TWO full questions are to be answered.

Question paper pattern for SEE:

- 1. Question paper consists Part-A and Part-B. Question number 1 is compulsory, it consists of short answer questions of 1 or 2 marks, covering entire syllabus (no multiple choice questions and No true or false questions, 50% of questions must be L3 and L4 level).
- 2. In Part-B total of eight questions with two from each unit; with internal choice to be set uniformly covering the entire syllabus.

3. Each question carries 20 marks and should not have more than four subdivisions.

In Part-B, any FOUR full questions

V Semester

SUBJECT CODE: 22UEC501C		Credits: 03
L:T:P-3-0-0	Digital Signal Processing	CIE Marks: 50
Total Hours/Week: 03		SEE Marks: 50

UNIT-I	10 Hrs.
Discrete Fourier Transform: Frequency domain sampling and reconstruction of discrete till DFT as a linear transformation, its relationship with other transforms, properties: multiplication of the same set o	olication of
two DFTs, circular convolution and additional properties of DFT. Application of DF	T in linear
filtering: overlap add and overlap save method.	10 11
UNIT-II	10 Hrs.
Fast Fourier Transform Algorithms: Need for efficient computation of DFT, Radix 2 FFT	0
for computation of DFT and IDFT: Decimation in time and decimation in frequency a	algorithms.
Goertzel algorithm and chirp-Z transform algorithm.	10 Hrs.
IIR filter design: Characteristics of commonly used analog filters – Butterworth and	
filters. Design of IIR filters from analog filters (i.e. Butterworth and Chebyshev), Tran	•
techniques: Impulse invariance method, Approximation of derivative (Backward difference) method. Bilinear transformation method.	
UNIT-IV	10 Hrs.
 Hamming, Hanning and Bartlet) method, FIR filter design using frequency sampling. Implementation of discrete time systems - Structures for IIR and FIR systems: Direct for form II, Cascade and Parallel realization. Reference Books * 	
 Textbook: 1. Proakis and Manolakis, "Digital Signal Processing-Principles Algorithms and Applic Publication, III Edition, 1997. 	cations" PHI
Reference Books: 1. Oppenheim and Schaffer, "Discrete Time Signal Processing" PHI Publication, III	Edition,
2003.	Eultion,
Course Outcomes**	
After completion of the course student will be able to	
1. Compute and use DFT for linear filtering applications.	
2. Calculate DFT and IDFT using FFT and IFFT algorithms.	
3. Design IIR filters using Butterworth and Chebyshev approximations and c	raw their
structures.	
4. Design FIR filters using windowing and frequency sampling techniques and a	draw their
structures.	

Course Outcomes	Programme Outcomes (POs) Program Specific Outcomes (PSOs) Outcomes (PSOs)											Programme Outcomes (POs)													
	1	2	3	4	1	2	3																		
CO1	3	2	1	0	1	0	0	0	0	0	0	0	3	0	0										
CO2	3	3	1	0	1	0	0	0	0	0	0	0	3	0	0										
CO3	3	3	3	0	1	0	0	0	0	0	0	0	3	0	0										
CO4	3	2	3	0	1	0	0	0	0	0	0	0	3	0	0										

* Books to be listed as per the format with decreasing level of coverage of syllabus ** Each CO to be written with proper action word and should be assessable and quantifiable

22UEC502C			
L:T:P - 3-0-0	Control Engineering	CIE Marks	s: 50
Total Hours/Week: 03		SEE Mark	s: 50
	UNIT-I		xx Hrs.
	on of control system, Concept of feedback and its	0	
1 0	Modeling of Electrical, Mechanical and Elec		
	physical system. Transfer function, Block diag	· 1	
Reduction technique, Signa	I flow graph representation and reduction using I	Mason's gain f	
	UNIT-II		xx Hrs.
•	control systems: Introduction, standard test signa	-	1
•	teady state error analysis, time domain specifica		•
1 1	ility, Location of Roots in the s-plane for stability,	, methods of de	termining
stability, Routh-Hurwitz s	UNIT–III		xx Hrs.
De et Le ere Te chaine d'une de la		C4 -1-11:4	
	roduction, Procedure for constructing Root-locus		
	main Analysis: Introduction, Bode plots, Gain		
frequency, gain margin, p	hase margin, Frequency domain specifications-	resonant peak,	resonant
frequency, and bandwidth.			
	UNIT-IV		xx Hrs.
Polar plots, Nyquist st	ability criterion; Principle of argument, m	apping, Nyqu	ist path,
Nyquistcriterion, Nyquist	Plot and stability analysis. State Space Analysis:	Introduction, c	concept of
state and variables, state n	nodel, Non homogeneous solution of a state equa	tion.	
Reference Books *			
1. Nagrath and Gopal,	"Control System Engineering", New Age public	ation.	
	control engineering", Person education, Asia/PH		002.
	Automatic Control Systems", PHI 7 th edition.		
4. Richard C. Dorf an	nd Robert. H. Bishop, "Modern Control System	ns", Person Ed	lucation, 8
thEdition, 2002.			
5. M. Gopal, "Control	Systems-Principles and Design", TMH, 2nd Edi	tion, 2002.	
6. David. K. Chng, "A	nalysis of Linear systems", Narosa publishing ho	ouse, 1996	
Course Outcomes**			
After completion of the co	ourse student will be able to		
	del electrical, mechanical and electromechanical	control system	IS.
	ntrol systems in time domain.	J	
	f a control system using root locus technique	and fraguance	y domain

SUBJECT CODE: 22UEC502C Credits: 03

3. Analyze stability of a control system using root locus technique and frequency domain analysis using Bode plotting techniques.

4. Determine the stability of control systems using polar and Nyquist plotting technique and represent the control systems using state space techniques.

* Books to be listed as per the format with decreasing level of coverage of syllabus ** Each CO to be written with proper action word and should be assessable and quantifiable

Course Outcomes		Programme Outcomes (POs) Program Outcomes														
	1	2	3	4	1	2	3									
CO1	3	3	2	-	2	2	-	-	-	-	-	-				
CO2	3	2	3	-	2	1	-	-	-	-	-	-				
CO3	3	2	3	-	3	-	-	-	1	-	-	-				
CO4	2	1	1	-	2	1	-	-	1	-	-	1				

SUBJECT CODE: 22UEC503C		Credits: 03
L:T:P - 3 : 0 : 0	Computer Networks	CIE Marks: 50
Total Hours/Week: 03		SEE Marks: 50

UNIT-I10 Hrs.Layered tasks, OSI Model, Layers in OSI model, TCP/IP Suite, Addressing, Data Link Control: Framing,
Flow and error control, Protocols, Noiseless channels and noisy channels, HDLC, PPP.

UNIT–II	10 Hrs.
MultipleAccesses:Randomaccess,Controlledaccess,Channelization,WiredLAN,Ethernet,IEEE standards,StandardEthernet.Changesinthestandards,FastEthernet,GigabitEthernet,Connecting LAN and Virtual LANs	ls, Backbone

Network Layer, Logical addressing, Ipv4 addresses, Ipv6 addresses, Ipv4 and Ipv6 Transition from Ipv4 to Ipv6, Delivery, Forwarding, Unicast Routing Protocols, Multicast Routing protocols.

10 Hrs.

10 Um

UNIT-III

LINIT IV

	10 1115.
Transport layer Process to process Delivery, UDP, TCP, Application Layer: Domain na	me system,
Name Space, Domain Name Space, Distribution of Name Space, DNS in the Internet, Resc	olution, DNS
messages, Types of Records, Registrars, Dynamic Domain Name System, Encapsulation.	

Reference Books *

- 1. DataCommunicationandNetworking, "BehrouzA.Forouzan", 4thEdition, TMH, India, 2006.
- 2. AndrewS.Tanenbaum, "Computernetworks", Prentice-Hall, 2010.
- 3. WilliamStallings, "DataandComputerCommunications", Prentice-Hall, 2007.

Course Outcomes**

After completion of the course student will be able to

1. Master the terminology and concepts of the OSI reference model and the TCP/IP reference model

- 2. Master the concepts of protocols, network interfaces, and design/performance issues in local area networks and wide area networks
- 3. Identify, compare and contrast different techniques and design issues of core functions such as addressing, routing, internetworking, switching, multiplexing, error and flow control, medium access and coding.
- 4. Become familiar with widely-used Internet protocols such as TCP/IP, UDP,etc.

* Books to be listed as per the format with decreasing level of coverage of syllabus

** Each CO to be written with proper action word and should be assessable and quantifiable

Course Outcomes			Pro		Program Specific Outcomes (PSOs)										
	1	1 2 3 4 5 6 7 8 9 10 11 12											1	2	3
CO1	3	2	3	2	1	1	1	0	0	0	0	0	1	0	3
CO2	3	3	2	2	1	1	1	1	0	0	0	0	1	0	3
CO3	3	3 2 3 2 1 1 1 0 1 1 0											1	0	3
CO4	3	3	3	2	1	1	2	1	1	1	1	1	1	0	3

Subject Code:22UEE504L	Digital Signal Processing Laboratory	Credit: 1.0
L:T:P-0-0-3		CIE marks: 50
Total Hours/Week :03		SEE Marks :50
	List of Experiments	
1. Generation of differer	nt analog and digital signals (impulse, ste	p, ramp, sine, cosine, square,
rectangular and triangu	ular) with given amplitude, frequency, phase	e and duration
2. Verification of sampling	g theorem.	
3. Implementation of amp	olitude scaling, time scaling, time reversal an	d time shift operations on given
signal.		
4. Response of continuou	s time and discrete time LTI systems to a giv	ven input.
5. Fourier series of given	continuous time and discrete time periodic	signal.
6. Fourier transform of given the form of given the form of given the form of	ven continuous time and discrete time a per	riodic signal
7. N point DFT of a give	n sequence of length L when (a) N < L (b) N = L and (C) N >L and their
corresponding IDFT.		
8. Verification of conjugation	te symmetry property of DFT	
9. Implementation of line	ar convolution using DFT and IDFT.	
10. Design and implementa	ation of IIR filter to meet given specification	S.
11. Design and implementa	ation of FIR filter using different windows to	meet given specifications.
12. Implementation of line	ar and circular convolution of given two seq	uences using DSP processor.
Course Outcomes**		
After Completion of the course	e student will be able to	
1. Generate different ana	log and digital signals of given amplitude, fro	equency, phase and duration
Implement different op	peration on digital and analog signals	
3. Convert given time dor	nain signal into frequency domain vice versa	Э
4. Design and implement	IIR and FIR filters to meet the given specification	ations.
5. Implement simple DSP	algorithms on DSP processor	
* Pooks to be listed as po	r the format with deceasing level of coverage	o of sullabus

* Books to be listed as per the format with deceasing level of coverage of syllabus

** Each CO to be written with proper action word and should be assessable and quantifiable

Course outcomes		Programme Outcomes (Pos) Program Specific Outcomes (PSOs)										cific SOs)			
	1	2	1	2	3										
CO1	3	2	1	0	1	0	0	0	0	0	0	1	3	0	0
CO2	3	2	2	0	1	0	0	0	0	0	0	1	3	0	0
CO3	3	2	1	0	1	0	0	0	0	0	0	1	3	0	0
CO4	3	2	3	0	1		0	0	0	0	0	1	3	0	0
CO5	3	2	3	0	1	0	0	0	0	0	0	1	3	0	3

SUBJECT CODE: 22UEC506E		Credits: 03
L:T:P - 3 : 0 : 0	Internet of Things	CIE Marks: 50
Total Hours/Week: 03		SEE Marks: 50

Course Objectives:

- 1. To understand the fundamentals of IoT and explore IoT technologies and architecture
- 2. To learn IoT protocols
- 3. To understand the fundamentals of data analytics in IoT
- 4. To develop IoT applications

UNIT-I	10 Hrs.
Introduction to Internet of Things (IoT): Definition of IoT, History and growth of intern	net and IoT,
Application areas and focus of IoT, Characteristics of IoT, Things in IoT, IoT Stack	
Enabling Technologies: Sensors, Cloud Computing, Big data Analytics, Communication IoT Challenges. IoT Levels: Level 1, Level 2, Level 3, Level 4, Level 5.	Protocols.
UNIT-II	10 Hrs.
Protocols for IoT-Messaging and Transport Protocols: Introduction, Messaging F	Protocols,
Transport Protocols.	
Protocols for IoT-Addressing and Identification: Introduction, IPv4, IPv6, URI	
Cloud for IoT: Introduction, types of cloud services, IoT with Cloud, Selection of cloud	with IoT
applications.	
UNIT-III	10 Hrs.
Data analytics-Visualizing the Power of data from IoT: Introduction to data analysi	
learning: Supervised Learning, Unsupervised Learning, Types of Machine Learning	
Classification, Regression, Clustering. Model Building Process: Training, testing and valid	0
model, Modelling Algorithms: Decision tree, Linear Regression, Logistics Regression, k	
model, Modelling Algorithms. Decision nee, Linear Regression, Logistics Regression, R	VICAUS
UNIT–IV	10 Hrs.
UNIT–IV Application Building with IoT: Smart perishable tracking/smart transportation Smart I IoT based application to monitor water quality, Smart warehouse monitoring, Smart retain	10 Hrs. healthcare,
Application Building with IoT: Smart perishable tracking/smart transportation Smart l	10 Hrs. healthcare,
Application Building with IoT: Smart perishable tracking/smart transportation Smart I IoT based application to monitor water quality, Smart warehouse monitoring, Smart retai Reference Books *	10 Hrs. healthcare,
Application Building with IoT: Smart perishable tracking/smart transportation Smart I IoT based application to monitor water quality, Smart warehouse monitoring, Smart retain	10 Hrs. healthcare,
Application Building with IoT: Smart perishable tracking/smart transportation Smart I IoT based application to monitor water quality, Smart warehouse monitoring, Smart retai Reference Books *	10 Hrs. healthcare, il.
 Application Building with IoT: Smart perishable tracking/smart transportation Smart I IoT based application to monitor water quality, Smart warehouse monitoring, Smart retai Reference Books * Text Books: Shriram K. Vasudevan, Abhishek S., Sundar Balakrishnan, "Internet of Things", Text Books: 	10 Hrs. healthcare, il. 1 st Edition,
 Application Building with IoT: Smart perishable tracking/smart transportation Smart I IoT based application to monitor water quality, Smart warehouse monitoring, Smart retai Reference Books * Text Books: Shriram K. Vasudevan, Abhishek S., Sundar Balakrishnan, "Internet of Things", Wiley, 2019. 	10 Hrs. healthcare, il. 1 st Edition,
 Application Building with IoT: Smart perishable tracking/smart transportation Smart I IoT based application to monitor water quality, Smart warehouse monitoring, Smart retai Reference Books * Text Books: Shriram K. Vasudevan, Abhishek S., Sundar Balakrishnan, "Internet of Things", Wiley, 2019. Raj Kamal, "Internet of Things: Architecture and Design", McGraw Hill, 2nd Edition 	10 Hrs. healthcare, il. 1 st Edition, June 2022
 Application Building with IoT: Smart perishable tracking/smart transportation Smart I IoT based application to monitor water quality, Smart warehouse monitoring, Smart retai Reference Books * Text Books: Shriram K. Vasudevan, Abhishek S., Sundar Balakrishnan, "Internet of Things", Wiley, 2019. Raj Kamal, "Internet of Things: Architecture and Design", McGraw Hill, 2nd Edition Reference Books: Daniel Minoli, "Building the Internet of Things with IPv6 and MIPv6: The Evolvir 	10 Hrs. healthcare, il. 1 st Edition, June 2022 ng World of skos, David

A student who successfully completes this course should be able to

Define and describe about different IoT characteristics 1.

- 2. Apply IoT protocols
- 3. Analyze IoT data using machine learning
- 4. Design and implement IoT applications

* Books to be listed as per the format with decreasing level of coverage of syllabus ** Each CO to be written with proper action word and should be assessable and quantifiable

Course Outcomes]	Prog	gran	nme (Outc	ome	es (P	Os)			Program Specific Outcomes (PSOs)				
	1	2	3	4	12	1	2	3									
CO1	3	0	2	0	2	2	3	2	2	2	3	1	0	0	1		
CO2	3	0	2	0	2	2	3	2	2	2	3	1	0	0	1		
CO3	3	0	2	0	2	2	3	2	2	2	3	1	0	0	1		
CO4	3	0	2	0	2	2	3	2	2	2	3	1	0	0	1		
CO5	3	0	2	0	2	2	3	2	2	2	3	1	0		1		

SUBJECT CODE: 22UEC507E	X 7	Credits: 03
L:T:P-3-0-0	Verilog programming	CIE Marks: 50
Total Hours/Week: 03		SEE Marks: 50

UNIT-I	10 Hrs.
Introduction to Verilog: Introduction, Computer-Aided Design, Hardware Description I Verilog Description of Combinational Circuits, Verilog Modules, Verilog Assignments, Assignments, Modeling Flip-Flops Using Always Block, Always Blocks Using Eve Statements, Delays in Verilog, Compilation, Simulation, and Synthesis of Verilog Cod Data Types and Operators, Simple Synthesis Examples, Verilog Models for Multiplexers. Registers and Counters Using Verilog Always Statements, Behavioral and Structura Constants, Arrays,	Procedural nt Control le, Verilog , Modeling
UNIT–II	10 Hrs.
Introduction to Verilog cont.: Loops in Verilog, Testing a Verilog Model. Design Examples: Introduction, BCD to 7-Segment Display Decoder, A BCD Add Adders, Traffic Light Controller, State Graphs for Control Circuits, Scoreboard and Synchronization and De-bouncing, A Shift-and-Add Multiplier, Array Multiplier, Integer/Fraction Multiplier, Keypad Scanner, Binary Dividers.	Controller,
UNIT-III	10 Hrs.
 Additional Topics in Verilog: Introduction, Verilog Functions, Verilog Tasks, Multiva and Signal Resolution, Built-in Primitives, User-Defined Primitives, SRAM model, SRAM Read/Write System, Rise and Fall Delays of Gates, Named Association, Statements, System Functions, Compiler Directives, File I/O Functions, Timing Checks. Hardware Testing and Design for Testability: Introduction, Testing Combination Testing Sequential Logic, Scan Testing, Boundary Scan, Built-In Self-Test. 	Model for Generate
UNIT–IV	10 Hrs.
Component Test and Verification: Test-bench, Combinational circuit testing, Sequent testing, Test-bench Techniques, Simulation control, Limiting data sets, Applying synchron Synchronized display of results, An interactive test-bench, Random time intervals, But application, Design Verification, Assertion Verification, Assertion verification bene verification library, Using assertion monitors, Assertion templates	nized data, ffered data
Reference Books *	
 Charles Roth, Lizy Kurian John, and ByeongKil Lee "Digital Systems Design Usi Cengage Learning, 2016 Zainalabedin Navabi "Verilog Digital System Design" Second Edition, Mcgraw Higher 3) Palnitkar, Samir. "Verilog HDL: a guide to digital design and synthesis" Vol. 1. Pr Professional, 2003. Sagdeo, Vivek. "The complete Verilog book". Springer Science & Business Media, 200 5) Smith, Douglas J., and Alex Foreword By-Zamfirescu. "HDL Chip Design: A practica designing, synthesizing and simulating ASICs and FPGAs using VHDL or Veril Publications, 1998. Bhasker, Jayaram. "A Verilog HDL Primer". Star Galaxy Publishing, 1999. 	r Ed,2008 rentice Hall 07. al guide for
After completion of the course student will be able to write 1. Verilog code for combinational and sequential circuits. 2. Verilog code for a simple digital system for given specifications using different des	ign styles.

- 3. Verilog code using advanced Verilog Concepts.
- 4. Develop Test benches to automate simulation and verification of design.

Course Outcomes		Programme Outcomes (POs)											Program Specific Outcomes (PSOs)		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	1	0	1	1	3	0	0	0	0	0	0	0	0	3	0
CO2	1	0	1	1	3	0	0	0	0	0	0	0	0	3	0
CO3	1	0	1	1	3	0	0	0	0	0	0	0	0	3	0
CO4	1	0	1	1	3	0	0	0	0	0	0	0	0	3	0

SUBJECT CODE: 22UEC508E		Credit	s: 03								
L:T:P - N _L :02 N _T :00 N _P :00	Mobile Communications	CIE Mark	ks: 50								
Total Hours/Week: 02		SEE Mar	ks: 50								
	UNIT-I 10 Hrs.										
Wireless standard organizations. Wireless transmission: Frequencies for radio communication, signals, antennas, signal propagation. Medium access control: Motivation for specialized MAC, SOMA, FDMA, TOMA, CDMA.											
	UNIT-II 10 Hrs.										
•	Telecommunication systems: GSM, UMTS and IMT2000, 4GLTE networks, 5G networks over view. Broadcast system: Overview, cyclical repetition of data, digital audio broadcasting, and digital video broadcasting. UNIT–III 10 Hrs.										
	Wireless LAN: IEEE802.11 system architecture, protocol architecture, physical layer, medium access controller, MAC management. 802.11b. and 802.11a. Bluetooth: user scenarios,										
	UNIT-IV		10 Hrs.								
Mobile network layer dynamic host configuration protocol, mobile Ad-hoc network. Mobile transport layer: Traditional TCP, classical TCP improvement, TCP over2.5/3G wireless network, performance enhancing proxies. Reference Books *											
	"Mobile Communications", second edition Pears troduction to wireless telecommunication syste		,								

networks ", First Edition Cengage learning

Course Outcomes**

After completion of the course student will be able to

- 1. identify the different mobile accessing techniques.
- 2. Identify the different architecture of mobile communications
- 3. Design and develop the different configurations of LAN systems.
- 4. Develop different network layer and transport layer protocols.

Course Outcomes		Programme Outcomes (POs)												Program Specific Outcomes (PSOs)		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	2	-	2	-	3	-	-	1	-	1	-	1	1	0	3	
CO2	2	-	2	-	3	-	-	1	-	1	-	1	1	0	3	
CO3	2	-	3	-	2	-	-	1	-	1	-	1	1	0	3	
CO4	2	-	3	-	3	-	-	1	-	1	-	1	1	0	3	

SUBJECT CODE: 22UEC509E		Credits: 03
L:T:P -3-0-0	Speech Processing	CIEMarks:50
Total Hours/Week: 03		SEEMarks:50

UNIT-I	10 Hrs.
Digital representation of speech signal. Waveform representation and parametric repre-	esentation.
Sampling rate conversion.	
Introduction, the process of speech production and classification and basics of phonetics	
description of phonemes, the acoustic theory of speech production, digital models for spee	ch–vocal
tract, radiation, excitation the complete model.	
UNIT-II	10 Hrs.
Introduction, time dependent processing of speech, short time energy and average magni	
time average zero crossing rate, voiced/unvoiced/silence detection. Pitch period estimatio	
and Gold method), short time autocorrelation function, short time average magnitude	difference
function, u/v/speech/silence detection.	10 Hrs.
Introduction, definitions and properties of short time Fourier transform (STFT), Fourier	
interpretation of STFT, linear filtering interpretation of STFT, sampling of STFT, speed	
and synthesis systems (Vocoders), phase vocoder, channel vocoder.	II allarysis
UNIT-IV	10 Hrs.
Introduction, homomorphic transformation, frequency domain representation of hom	
systems, inverse cepstum transformation, the complex cepstrum of speech, cepstral	
processing applications of cepstral analysis.	
Reference Books *	
Textbook:	
1. L.R.RabinerandR.W.Schafer, "DigitalProcessingofSpeechSignals," Pearson Edu	leation
(Asia) Pte. Ltd., 2004.	Cation
ReferenceBook:	
1. D.O'Shaughnessy, "SpeechCommunications:HumanandMachine,"Universities	Press
2001.	. 1000,
	ception of
speech and music' Pearson Education, 2003.	1
I , , , , , , , , , , , , , , , , , , ,	
Course Outcomes**	
After completion of the course student will be able to	
1. Explain the speech production and perception mechanism	
2. Characterize and analyze speech signals in Time domain	
3. Characterize and analyze speech signals in Frequency domain4. Analyze speech signal using homomorphic transformation and LPC	

Course Outcome		Programme Outcomes (POs)												Program Specific Outcomes (PSOs)			
S	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
CO1	3	2	1	0	1	1	0	0	0	0	0	0	3	0	0		
CO2	3	3	2	0	1	1	0	0	0	0	0	0	3	0	0		
CO3	3	2	1	0	1	1	0	0	0	0	0	0	3	0	0		
CO4	3	3	1	0	1	1	0	0	0	0	0	0	3	0	0		

SUBJECT CODE:22UEC533N		Credits: 03
L:T:P - 3 : 0 : 0	Wireless Networks	CIE Marks: 50
Total Hours/Week: 03		SEE Marks: 50

	UNIT-I	10 Hrs.
W	ireless networks: Wireless network architectures, classification of wireless network	s, wireless
sv	vitching technology, wireless communication problems, wireless network referen	ce model,
w	ireless networking issues, wireless networking standards. Wireless Body Area Networ	k (WBAN):
Pr	operties, network architecture, network components, design issues, network protoc	ols, WBAN
Te	echnologies, WBAN Applications. Wireless Personal Area Network (WPAN): Wireles	s Personal
Ai	ea Network, network architecture, Piconet and Scatternet, WPAN componen	ts, WPAN
te	chnologies and protocols, WPAN Applications.	
	UNIT–II	10 Hrs.
W	ireless Local Area Network (WLAN):Network components, design requirements	of WLAN,
ne	etwork architecture, WLAN standards, WLAN protocols, IEEE 802.11p, WLAN Applicati	ons
	UNIT–III	10 Hrs.
W	ireless Metropolitan Area Network (WMAN): Wireless Metropolitan area network	ks, WMAN
ne	etwork architecture, network protocols, broadband wireless networks, WMAN Applica	ations. Ad-
ho	oc Networks: Introduction, Issues in Ad hoc wireless networks, Ad hoc wireless interne	et.
1		
	UNIT–IV	10 Hrs.
M	UNIT-IV AC Protocols for Ad-hoc wireless networks: Introduction, issues in designing a MAC p	10 Hrs.
		10 Hrs. rotocol for
A	AC Protocols for Ad-hoc wireless networks: Introduction, issues in designing a MAC p	10 Hrs. rotocol for networks,
Ao cla	AC Protocols for Ad-hoc wireless networks: Introduction, issues in designing a MAC p d hoc wireless networks, design goals of a MAC protocol for Ad hoc wireless	10 Hrs. rotocol for networks, echanisms.
Ac cla Cc	AC Protocols for Ad-hoc wireless networks: Introduction, issues in designing a MAC p d hoc wireless networks, design goals of a MAC protocol for Ad hoc wireless assification of MAC protocols, contention based protocols with reservation me	10 Hrs. rotocol for networks, echanisms.
Ac cla Cc ar	AC Protocols for Ad-hoc wireless networks: Introduction, issues in designing a MAC p d hoc wireless networks, design goals of a MAC protocol for Ad hoc wireless assification of MAC protocols, contention based protocols with reservation me ontention-based MAC protocols with scheduling mechanism, MAC protocols that use	10 Hrs. rotocol for networks, echanisms.
Ad cla Cd ar Re	AC Protocols for Ad-hoc wireless networks: Introduction, issues in designing a MAC p d hoc wireless networks, design goals of a MAC protocol for Ad hoc wireless assification of MAC protocols, contention based protocols with reservation me ontention-based MAC protocols with scheduling mechanism, MAC protocols that use atennas, Other MAC protocols. Overview of ad hoc routing protocols.	10 Hrs. rotocol for networks, echanisms. directional
Ad cla Cd ar Re 1.	AC Protocols for Ad-hoc wireless networks: Introduction, issues in designing a MAC p d hoc wireless networks, design goals of a MAC protocol for Ad hoc wireless assification of MAC protocols, contention based protocols with reservation me ontention-based MAC protocols with scheduling mechanism, MAC protocols that use intennas, Other MAC protocols. Overview of ad hoc routing protocols. Ference Books * Sunilkumar S. Manvi, Mahabaleshwar S. Kakkasageri, "Wireless and Mobile Networks and Protocols", Wiley-India, First Edition, 2010	10 Hrs. rotocol for networks, echanisms. directional
Ac cla Cc ar Re 1.	AC Protocols for Ad-hoc wireless networks: Introduction, issues in designing a MAC p d hoc wireless networks, design goals of a MAC protocol for Ad hoc wireless assification of MAC protocols, contention based protocols with reservation me ontention-based MAC protocols with scheduling mechanism, MAC protocols that use atennas, Other MAC protocols. Overview of ad hoc routing protocols. Ference Books * Sunilkumar S. Manvi, Mahabaleshwar S. Kakkasageri, "Wireless and Mobile Networks and Protocols", Wiley-India, First Edition, 2010 C.SivaRamMurthy,B.S.Manoj"AdhocwirelessNetworks",PearsonEducation,2 nd Edition	10 Hrs. rotocol for networks, echanisms. directional : Concepts
Ad cla Cd ar Re 1.	AC Protocols for Ad-hoc wireless networks: Introduction, issues in designing a MAC p d hoc wireless networks, design goals of a MAC protocol for Ad hoc wireless assification of MAC protocols, contention based protocols with reservation me ontention-based MAC protocols with scheduling mechanism, MAC protocols that use atennas, Other MAC protocols. Overview of ad hoc routing protocols. ference Books * Sunilkumar S. Manvi, Mahabaleshwar S. Kakkasageri, "Wireless and Mobile Networks and Protocols", Wiley-India, First Edition, 2010 C.SivaRamMurthy,B.S.Manoj"AdhocwirelessNetworks",PearsonEducation,2 nd Edition	10 Hrs. rotocol for networks, echanisms. directional : Concepts
Ac cla Cc ar Re 1. 2. 3.	AC Protocols for Ad-hoc wireless networks: Introduction, issues in designing a MAC p d hoc wireless networks, design goals of a MAC protocol for Ad hoc wireless assification of MAC protocols, contention based protocols with reservation me ontention-based MAC protocols with scheduling mechanism, MAC protocols that use attennas, Other MAC protocols. Overview of ad hoc routing protocols. ference Books * Sunilkumar S. Manvi, Mahabaleshwar S. Kakkasageri, "Wireless and Mobile Networks and Protocols", Wiley-India, First Edition, 2010 C.SivaRamMurthy,B.S.Manoj"AdhocwirelessNetworks",PearsonEducation,2 nd Edition KavehPahlavan,P.Krishnamurthy,"Principles of WirelessNetworks",Pearson Educa Edition, 2002 Yi-BingLin,ImrichChlamtac,"Wireless and Mobile Network Architectures",John W	10 Hrs. rotocol for networks, echanisms. directional :: Concepts n, 2005. tion, First
Ac cla Cc ar Re 1. 2. 3.	AC Protocols for Ad-hoc wireless networks: Introduction, issues in designing a MAC p d hoc wireless networks, design goals of a MAC protocol for Ad hoc wireless assification of MAC protocols, contention based protocols with reservation me ontention-based MAC protocols with scheduling mechanism, MAC protocols that use atennas, Other MAC protocols. Overview of ad hoc routing protocols. ference Books * Sunilkumar S. Manvi, Mahabaleshwar S. Kakkasageri, "Wireless and Mobile Networks and Protocols", Wiley-India, First Edition, 2010 C.SivaRamMurthy,B.S.Manoj"AdhocwirelessNetworks",PearsonEducation,2 nd Edition KavehPahlavan,P.Krishnamurthy, "Principles of WirelessNetworks",Pearson Educa Edition, 2002 Yi-BingLin,ImrichChlamtac, "Wireless and Mobile Network Architectures",John W Edition, 2001	10 Hrs. rotocol for networks, echanisms. directional :: Concepts a, 2005. tion, First
Ad cl: CC ar Ret 1. 2. 3. 4.	AC Protocols for Ad-hoc wireless networks: Introduction, issues in designing a MAC p d hoc wireless networks, design goals of a MAC protocol for Ad hoc wireless assification of MAC protocols, contention based protocols with reservation me ontention-based MAC protocols with scheduling mechanism, MAC protocols that use attennas, Other MAC protocols. Overview of ad hoc routing protocols. ference Books * Sunilkumar S. Manvi, Mahabaleshwar S. Kakkasageri, "Wireless and Mobile Networks and Protocols", Wiley-India, First Edition, 2010 C.SivaRamMurthy,B.S.Manoj"AdhocwirelessNetworks",PearsonEducation,2 nd Edition KavehPahlavan,P.Krishnamurthy,"Principles of WirelessNetworks",Pearson Educa Edition, 2002 Yi-BingLin,ImrichChlamtac,"Wireless and Mobile Network Architectures",John W	10 Hrs. rotocol for networks, echanisms. directional : Concepts a, 2005. tion, First /iley, First

Course Outcomes**

After completion of the course student will be able to

- 1. Understand the fundamentals of wireless networks
- 2. Analyze unique characteristics and various design issues in wireless networks
- 3. Demonstrate basic skills for different types of wireless networks design
- 4. Apply knowledge of various TCP/IP protocols for wireless networking

* Books to be listed as per the format with decreasing level of coverage of syllabus

** Each CO to be written with proper action word and should be assessable and quantifiable

Course Outcomes													gram Spe comes (P		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	3	2	1	1	1	0	0	0	0	0	1	0	3
CO2	3	3	2	2	1	1	1	1	0	0	0	0	1	0	3
СОЗ	3	2	3	2	1	1	1	0	1	1	1	0	1	0	3
CO4	3	3	3	2	1	1	2	1	1	1	1	1	1	0	3

SUBJECT CODE: 22UEC532N		Credits: 03
L:T:P-3-0-0	Digital Electronics and Microcontrollers	CIE Marks: 50
Total Hours/Week: 03		SEE Marks: 50
	UNIT-I	xx Hrs.
-	uits: Definition of combinational circuit, design p Il subtractor, parallel adder, decoder, encoder, 	
	UNIT–II	xx Hrs.
microcontrollers, Z80 and features of 8051 Microcor		1 Architecture: General el, pin description, 8051 l RAM and ROM, stack,
	UNIT-III	xx Hrs.
data move instructions, ext	gramming: addressing modes, types of instructi ternal data move instructions, arithmetic instructi , bit-addressable instructions, programs using a	ons, logical instructions, ll the above instructions
	UNIT-IV in assembly: Timer and counter programming	xx Hrs.
interrupts, Programming ti Reference Books * 1. Donald D Givone, "Dig 2. Kenneth J. Ayala, "TH Penram International, 3. Muhammad Ali Mazie Systems", Pearsons Ec and design", Thomson 4. Thomas L. Floyd, "Digi 5. Dr.Uma Rao and	gital principle and design", Tata McGraw Hill edit ne 8051 Micro controller Architecture, Progra 2nd Edition,1996 di, Janice Gillispie Mazidi, "The 8051 Micro co ducation, 2 nd edition, 2007. John M Yarbrough, '	tion, 2002 Imming & Applications", Introller and Embedded "Digital logic applications
	on, "8051 microcontroller", Elsevier, 1 st Edition,	
 Proficient in defining, ability to design and i Acquire a comprehe capable of analyzing including its program organization. Develop programmin arithmetic operation instructions. Gain expertise in pro 	purse student will be able to classifying, and analyzing combinational circui mplement various basic combinational circuits ensive understanding of microprocessors and the architecture and general features of the ming model, pin description, oscillator, clock, g skills in writing assembly programs that invo us, logical functions, jump, call instructions, ogramming timers and counters for timekeepi ation, enabling data transmission and receptior	effectively. d microcontrollers and e 8051 microcontroller, registers, and memory olve data manipulation, and bit- addressable ng and event counting,

and handling interrupts for event-driven programming.

Course Outcomes		Programme Outcomes (POs)												gram Spo comes (P	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	1		1	1	1							3	
CO2	3	2	1		1	1	1							3	
CO3	3	2	2		2	2	1	2	1	1	1	2		3	
CO4	3	2	2		2	1	1	2	1	1	1	2		3	

SUBJECT CODE: 2UBT522C	Environmental Studies	Credits: 01
L:T:P-1-0-0		CIE Marks: 50
Total Hours/Week: 01		SEE Marks: 50

UNIT-I	04 Hrs.							
Natural Resources: Human activities and their impacts Hydropower, Tidal energy, Ocean thermal energy, Geo t Biodiesel, Bioethanol, Hydrogen as fuel. Non renewabl Nuclear energy.	hermal energy, Biomass energy, Biogas,							
UNIT-II	04 Hrs.							
Environmental Pollution: Water pollution, water quality problem, Air pollution, Noise pollution. Effect of electron Sustainable future : Concept of sustainable development sustainable development. Environment economics – conc mechanism (CDM).	nagnetic waves. at, threats to sustainability, strategies for							
UNIT–III	03 Hrs.							
Current Environmental Issues of concern:03 houand Global Warming, Climate change, ozone layerEnvironmental policy legislation rules & regulations	trs Greenhouse Effect- Greenhouse gases depletion, Acid rain, Eutrophication,							
UNIT–IV	04 Hrs							
 classification, characteristics, collection & transportation, disposal, and processing methods. Hazardous waste management and handling. Concept of waste water treatment, Bioremediation, Industrial waste management (Case studies: Cement, plastic, chemical, E–waste, food & construction industry waste management). Reference Books * 								
 Benny Joseph "Environmental Studies" Tata McGraw Hi Dr. D. L. Manjunath, "Environmental Studies" Pearson E Koushik and Koushik "Environmental Science & Enginee New Delhi, 2006 Meenakshi "Environmental Science & Engineering" Prace 	ducation, 2006 ring" New Age International Publishers,							
Course Outcomes**								
 After completion of the course student will be able to 1. Ability to recognize natural resources and its uses. 2. Able to understand pollution and its effects on envi future in the work place. 3. Ability to understand current environmental issues. 4. Able to apply the waste management techniques in v 								

Course Outcomes		Programme Outcomes (POs)										Program Specific Outcomes (PSOs)			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
C01	-	1	-	-	-	2	3	-	-	-	-	3	1	-	-
CO2	2	-	-	-	-	-	3	-	-	-	-	3	1	-	-
CO3	-	2	-	-	-	2	2	-	-	-	-	3	1	-	-
CO4	-	-	-	1	-	2	2	1	-		-	3	1	-	1

SUBJECT CODE: 22UHS521C	Quantitative Aptitude and Professional	Credit: 02
L:T:P - 2 : 0: 0	Skills	CIE Marks: 50
Total Hours/Week:02		SEE Marks: 50

Course Objectives:

- 1. To develop and augment written English language vocabulary and comprehension skills
- 2. To augment the ability to understand and analyse a problem and find its solution through analysis of data given
- 3. To fine-tune the quantitative analysis and problem-solving skills

UNIT-I	08 Hrs.						
Vocabulary Development: Vocabulary Building Techniques, Root Words, Antonyms & Sentence Completion, Error Detection & Correction, Reading Comprehension	z Synonyms,						
UNIT–II	08 Hrs.						
Numbers, Proportion & Finance: Number System, Factors & Multiples, The God of M	lath – Linear						
Equations, Ratio-Proportion-Variation, Percentages, Profit & Loss, Interest, Averages & A							
UNIT-III	07 Hrs.						
Time & Probability: Time & Work, Time Speed, & Distance, Permutations & Combinat Probability	tions,						
UNIT-IV	07 Hrs.						
Verbal, Analytical, and Visual Reasoning: Human Relations, Direction Tests, Coding I Clocks and Calendars, Visual Reasoning, Analytical Puzzles, Mathematical, Arrangement Classification Puzzles	•						
Reference Books							
 R. S. Aggarwal, "A Modern Approach to Verbal and Non – Verbal Reasoning", Sultan O Sons, New Delhi, 2018 R. S. Aggarwal, "Quantitative Aptitude", Sultan Chand and Sons, New Delhi, 2018 Chopra, "Verbal and Non – Verbal Reasoning", MacMillan India M Tyra, "Magical Book on Quicker Maths", BSC Publications, 2018 George J Summers, "The Great Book of Puzzles & Teasers", Jaico Publishing House, 19 Shakuntala Devi, "Puzzles to Puzzle You", Orient Paper Backs, New Delhi, 1976 R. S. Aggarwal, "A Modern Approach to Logical Reasoning", Sultan Chand and Sons, N 2018 Cambridge Advanced Learner's Dictionary, Cambridge University Press. Kaplan's GRE 	989 Jew Delhi,						
Course Outcomes							
After active participation in this course, the student will have							

CO1: Enhanced his/her vocabulary and learnt techniques to augment it further

- **CO2:** Learned the techniques to augment his/her verbal ability
- **CO3:** Understood step-by-analysis of the given problem and learnt to develop a method for solving it
- **CO4**: Enhanced and augmented his/her ability to work with quantitative problems

со	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		1							2	3		1		
CO2		1							2	3				
CO3		2	2	3								1		
CO4		1		2							2	1		

VI Semester

22UEC601C			Creans. 05								
	T:P - 3 :0: 0	Information Theory and Coding	CIEMarks:50								
Total H	Iours/Week: 03		SEEMarks:50								
		UNIT-I	10 Hrs.								
		duction, measure of information, average inform									
0	1 I	ces, average information content of symbols in lo									
		or information source, entropy and information ra									
Huffman		es, Shannon's encoding algorithm, Shannon-Fa	no encoding algorithm,								
Tiuttillali	Counig.	UNIT-II	10 Hrs.								
Commu	nication channel	s: Discrete communication channels, entropy fun									
		erties of mutual information, rate of informati									
		y of a discrete memory less channel, Shannor									
		ncy and redundancy, symmetric/uniform char									
channel, binary erasure channel. Shannon-Hartley law and its implications.											
		UNIT–III	10 Hrs.								
		troduction, types of errors, examples of error con									
	• • •	codes. Linear Block Codes: Matrix description	-								
		s, syndrome and error correction, syndrome calcu									
-	_	e and minimum distance of LBC, error detection a	and correction capability								
OF LBCS	of LBCs, standard array. 10 Hrs.										
Binom C	valia Codes: Ala	ebraic structure of cyclic codes, encoding using (10 Hrs.								
-		detection and correction.	n, k) on shint register,								
•		nection pictorial representation, time and trans	form domain approach.								
		es, Structural properties of convolution codes:									
trellis dia											
Experime	ents										
Sl.No	Experiment Na	ime									
_	Calculate entro	opy and average information content for inde	pendent and dependent								
1.	sequences.										
2.	Simulate a Mai	rkov model for dependent sequences.									
۷.	Implement She	nnon Fano coding for a given set of symbols	nd probabilities								
3.	Implement Shannon-Fano coding for a given set of symbols and probabilities.										
-	Encode and de	ecode messages using Huffman coding and c	ompare efficiency with								
4.	Shainion-Fano.										
F	Simulate a disc	rete channel and calculate mutual information	a, channel capacity, and								
5.	efficiency.										
6.	Apply error correction codes to detect and correct errors in a binary symmetric										
υ.	channel.										
7.	Construct a sta	ndard array and understand coset leaders for	(n, k) linear block codes.								
	Perform syndr	ome calculations to detect and correct errors i	n linear block codes								
8.	1 CITOI III Syllul	one carculations to acteet and correct cirors i	n mitar bitter cours.								

Credits: 03

SUBJECT CODE:

8.

	9.	Calculate syndromes for cyclic codes and verify error detection and correction.
	10.	Encode and decode messages using convolutional codes and visualize processes with trellis diagrams.
Re	ference	e Books *
1. 2. 3. 4.	Berna educa K. San	ntyanarayana,2004, Concepts of information theory and coding (2 nd edition)Dynaram. rd Sklar,2002, Digital communication fundamentals and applications (2 nd edition) Pearson tion. In Shanmugam, 1996, Digital and analog communication systems, John Wiley. Haykin,2003, Digital communication, John Wiley.
Co	urse O	utcomes**
Af	ter con	apletion of the course student will be able to
1. 2. 3. 4.	differe Derive descri	nstrate the basic information theory concepts, entropy, need of coding and working of ent types of source coding techniques. e channel capacity expression for different types of discrete communication channels and be entropy functions, equivocation, mutual information of communication channel. n an encoder, decoder, and error correction circuit for linear block code.

Course Outcomes		Programme Outcomes (POs)												Program Specific Outcomes (PSOs)			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
CO1	3	2	1	0	1	1	1	0	0	0	0	0	3	0	0		
CO2	3	2	1	0	0	1	0	0	0	0	0	0	3	0	0		
CO3	3	3	2	0	1	1	1	0	0	0	0	0	3	0	0		
CO4	3	3	2	0	1	1	1	0	0	0	0	0	3	0	0		

SUBJECT CODE: 22UEC602C		Credits: 03
L:T:P - 2 : 2 : 0	Electromagnetic Theory	CIE Marks: 50
Total Hours/Week: 04		SEE Marks: 50

UNIT-I	10 Hrs.
Coulomb's Law and electric field intensity: Introduction to coulomb's law, field in	•
continuous volume charge distribution, Field of a line charge & field of sheet charge,	•
Gauss law and divergence: Electric flux density, Gauss law, Application of Gauss l	
charge distribution (point charge, Coaxial cable) and differential volume element, Div	ergence, Maxwell's
first equation, vector operator delland divergence theorem.	
UNIT–II	10 Hrs.
Energy and potential: Energy expended in moving a point charge in an electric field	
definition of potential difference and potential, the potential field of a point charg	e, potential field of
system of charges, potential gradient, Energy density in an Electrostatic Field.	
Conductors, dielectrics and capacitance: Current and current density, continuity of	current, conductor
properties and boundary conditions, boundary conditions for perfect dielectric	s, capacitance and
examples (Parallel plate capacitor, Dielectric boundary normal to plates).	
UNIT–III	10 Hrs.
Poisson's and Laplace's equations: Poisson's and Laplace's equations. Uniqueness t	heorem, examples of
the solution of Lapalce and poisson's equations.	
The steddy Magnetic Field:Biot-savart's law, Ampere's Circuital Law, curl, stokes	theorem, magnetic
flux density, scalar and vector magnetic potentials.	
UNIT–IV	10 Hrs.
Time varying fields and Maxwell's equations: Faraday's Law, Displacement Current	, Maxwell's equation
in point and integral form, retarded potentials.	
Uniform Plane Wave: Wave Propagation In free space an Dielectrics, Poynting's	Theorem and wave
power, Plane wave in boundaries and in dispersive media: Reflection Uniform Pla	ane Wave At normal
incidence, SWR.	
Reference Books *	
1. WilliamHHaytJr, JohnABuck, "EngineeringElectronics", TataMcGraw-Hill, 7th edi	tion, 2006
2. JohnKraussandDanielAFleisch,"Electromangeticswithapplication",McGraw-Hil	
3. DavidKCheng, "FiledandwaveElectromangetics"PearsoneducationAsia, 2 nd edition	
Reprint-2001.	, ,
Course Outcomes**	
After completion of the course student will be able to	
1. Understand the concept of scalar, vectors, Coulombs law, Electric filed intensit	•
applications, divergence and analyze the problems based on the mentioned law	S
2. Understand potential due to charges, potential gradient, continuity equation, b	oundary conditions
and capacitance and Analyze the problems based on the mentioned laws	
3. Understand Poisson's, Laplaces equation and its application, Uniqueness theorem	n, Biot-savart's law,
ampere's law, stokes theorem and Curl with respect to magnetic fields and an	alyze the problems
related to the mentioned laws	
4. Understand about time varying fields, Maxwell's equation, retarded potential, v	vave propagation in
free space, Poynting's theorem, uniform plane waves, Polarization of plane wa	
Ratio (SWR) and analyze the problems based on the mentioned laws.	

* Books to be listed as per the format with decreasing level of coverage of syllabus

Course Outcomes		Programme Outcomes (POs)												Program Specific Outcomes (PSOs)				
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3			
CO1	3	3	3	2	2	2	2	1	0	0	0	0	3	0	0			
CO2	3	2	3	2	1	2	2	1	0	0	0	0	3	0	0			
CO3	3	2	3	2	2	2	2	1	0	0	0	0	3	0	0			
CO4	3	3	3	3	3	3	3	1	0	0	0	0	3	0	0			

** Each CO to be written with proper action word and should be assessable and quantifiable

22UEC003C	CMOS Digital VLSI Design		
L:T:P-3-0-0	CIVIOS Digital VLSI Desigli	CIE Mark	s: 50
Total Hours/Week: 03		SEE Marl	ks: 50
	UNIT-I		10 Hrs.
Introduction: A Brief His	story, Preview, MOS Transistors, CMOS Logic,	CMOS Fabri	
	ing. MOS Transistor Theory: Introduction		
	acteristics (simple MOS capacitance models), No		
	CMOS Processing Technology:		
Introduction, CMOS Tech	nologies.		
	UNIT-II		10 Hrs.
Delay: Introduction, Tran	sient Response, RC Delay Model, Linear Delay	Model (Logi	ical effort,
	gic gate, drive), Logical Effort of Paths, Power:		
Introduction, Dynamic Po	wer, Static Power.		
	UNIT-III		10 Hrs.
Interconnect: Introduction	n (wire Geometry), Interconnect Modeling, Inter	rconnect Impa	ict (Delay,
	Dinational Circuit Design: Introduction, Circuit		
Silicon-On-Insulator Circu	e e		
	UNIT-IV		10 Hrs.
Sequential Circuit Desig	n: Introduction, Circuit Design of Latches and I	Flin Flons (co	nventional
Memory, Serial Access I Addressable Memory, Pro		circuitry), I	Read-Only
Reference Books *			
Text Book:			
	Weste, David Harris "CMOS VLSI Design	A Circuits ar	nd Systems
Perspective"			5
1	cation Publisher, Fourth Edition, 2015.		
Reference Books:			
1. Jan M. Raba A	ey, Anantha Chandrakasan, Borivoje Nikolic "I	Digital Integrat	ted Circuits
Design			
2. Perspective"	Pearson Education Publisher, Second Edition. 2	010.	
3. John P Uyen	nura "Introduction to VLSI Circuits and Systems'	'Wiley Public	ation 2002.
4. R. Jcob Bak	er, Harry W. Li and David E Boyce "CMOS Cin	cuit Design, I	Layout, and
Simulation"			
Course Outcomes**			
1. Draw the la and MOSFET trans	ourse student will be able to yout of CMOS circuits; apply the knowledge o istors in VLSI design. quivalent circuit of CMOS circuits and estima		-

SUBJECT CODE: 22UEC603C

Credits: 03

- Draw RC equivalent circuit of CMOS circuits and estimate delay and power. 2.
- 3. Model & design of interconnects in chips, design of combinational circuits.

Design basic buildings of sequential and memory blocks using MOSFET 4. transistors.

Course Outcomes		Programme Outcomes (POs)											Program Specific Outcomes (PSOs)				
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
CO1	3	3	3	0	0	0	0	0	0	0	0	0	3	1	0		
CO2	3	3	3	0	0	0	0	0	0	0	0	0	3	2	0		
CO3	3	3	3	0	0	0	0	0	0	0	0	0	3	2	0		
CO4	3	3	3	0	0	1	2	0	0	0	0	0	3	2	0		

SUBJECT CODE: 22UEC618L		Credits: 01
L:T:P - 0-0-3	CMOS Digital VLSI Laboratory	CIE Marks: 50
Total Hours/Week: 03		SEE Marks: 50

	NAME OF THE EXPERIMENT
Design follow	ring CMOS/TG based circuits with given specifications* and complete the VLSI
design flow m	entioned below using appropriate tool:
a)	Draw the schematic and verify the following
	i) DC Analysis ii)Transient Analysis
b)	Draw the Layout and verify the DRC,ERC
c)	Check for LVS
d)	Extract RC and back annotate the same and verify the design.
1)	CMOS inverter
2)	CMOS two input NAND gate
3)	CMOS two input NOR gate
4)	CMOS two input OR gate
5)	CMOS two input AND gate
6)	TG based two input XOR and XNOR gates
7)	Negative edge triggers D flip flop using TGs and inverters
8)	4:1 MUX using TGs and inverters
9)	3- Bit up counter
10)	3-Bit SISO shift register
*An appropria	te constraint should be given
Course Outco	nes**
After completi	on of the course student will be able to
-	Design CMOS/ TG based gates, MUX, flipflops, counters and shift register.
	Draw the layout, run DC and transient analysis for designed CMOS standard
cells.	

Course Outcomes				Pro	ogra	mme	Out	com	es (P	Os)				gram Spe comes (P	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	1	0	2	0	3	0	0	0	0	0	0	0	3	0	0
CO2	1	0	2	0	3	0	0	0	0	0	0	0	3	0	0

SUBJECT CODE: 22UEC619L		Credits: 01
L:T:P - 0 : 0 : 2	Computer Networks Laboratory	CIE Marks: 50
Total Hours/Week: 02		SEE Marks: 50

SI.N	LISTOF EXPERIMENTS
0.	
1.	Study of different types of network cables and practically implement the cross-wired
	cable and straight through cable using clamping tool
2.	Study of network components/devices:i)NICii)Hubiii)Switch
3.	Connecting computers on Local Area Network(LAN)
4.	Study of packet tracer
5.	Configuration of different network topologies using packet tracer
6.	Configuration of switch and establishing LAN using packet tracer
7.	Creation of Virtual LAN(VLAN)using packet tracer
8.	Configuration Of Basic Routing Using Packet Tracer
9.	Configuration of a network using Routing Information Protocol(RIP)using packet
	tracer
10.	Configuration of a network using Open Shortest path First(OSPF) using packet tracer
11.	Configuration of DHCP using packet tracer
12.	Configuration of NAT using CISCO packet tracer
Course Outc	omes**
After comple	etion of the course student will be able to
1.	To Apply the concepts of Data Communication and Networking
2.	To do Internetworking & devices
3.	To Develop New Routing techniques
4.	Practically Know The Functionality of devices using RIP, OSPF, DHCP, and NAT

Course Outcomes]	Progr	amı	ne (Dutc	ome	es (P	Os)			Program Specific Outcomes (PSOs)				
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
CO1	3	2	3	2	1	1	1	0	0	0	0	0	1	0	3		
CO2	3	3	2	2	1	1	1	1	0	0	0	0	1	0	3		
CO3	3	2	3	2	1	1	1	0	1	1	1	0	1	0	3		
CO4	3	3	3	2	1	1	2	1	1	1	1	1	1	0	3		

SUBJECT CODE: 22UEC615C		Credits:03
L:T:P-3-0-0	JAVA Programming	CIE Marks: 50
Total Hours/Week: 03		SEE Marks: 50

UNIT-Ixx Hrs.Introducing classes, Objects and Methods: Introducing Classes, Class Fundamentals, The
GeneralForm of a Class, A Simple Class, Declaring Objects, A Closer Look at new, Assigning
Object Reference Variables, Introducing Methods, Adding a Method to the Box Class, Returning a
Value, Adding a Method That Takes Parameter , Constructors, Parameterized Constructors, The this
Keyword, The finalize() Method, A Stack Class. A Closer Look at Methods and Classes :
Overloading Methods , Overloading Constructors, Using Objects as Parameters, A Closer Look at
Argument Passing, Returning Objects, Recursion, Introducing Access Control, Understanding static,
Introducing final, Arrays Revisited, Introducing Nested and Inner Classes, Exploring the String
Class, Using Command Line Arguments.

UNIT-II

Inheritance: Inheritance, Inheritance Basics, Member Access and Inheritance, Example, A Super class Variable Can Reference a Subclass Object, Using super, Using super to Call Super class Constructors, A Second Use for super, Creating a Multilevel Hierarchy, When Constructors Are Called, Method Overriding, Dynamic Method Dispatch, Why Overridden Methods?, Applying Method Overriding. Using Abstract Classes, Using final with Inheritance, Using final to Prevent Overriding, Using final to Prevent Inheritance, The Object Class. Packages and Interfaces: Packages, Defining a Package, Finding Packages and CLASS PATH, A Short Package Example, Access Protection, An Access Example, Importing Packages, Interfaces, Defining an Interface, Implementing Interfaces, Nested Interfaces.

UNIT-III

xx Hrs.

xx Hrs.

Exception Handling : Exception-Handling Fundamentals, Exception Types, Uncaught Exceptions, Using try and catch, Displaying a Description of an Exception, Multiple catch Clauses, Nested try Statements, throw, throws, finally, Java's Built-in Exceptions, Creating Your Own Exception Subclasses, Using Exceptions. Multithreaded Programming : The Java Thread Model, Thread Priorities, Synchronization, Messaging, The Thread Class and the Runnable Interface, The Main Thread, Creating a Thread, Implementing Runnable, Extending Thread, Creating Multiple Threads, Using is Alive() and join().

UNIT-IV

xx Hrs.

Multithreaded Programming Continuous: Thread Priorities, Inter thread Communication, Deadlock, Suspending, Resuming, and Stopping Threads, Suspending, Resuming, and Stopping Threads. The Applet Class :Two Types of Applets, Applet Basics, The Applet Class, Applet Architecture, An Applet Skeleton, Applet Initialization and Termination, Overriding update(), Simple Applet Display Methods, A Simple Banner Applet, Using the Status Window, The HTML APPLET Tag, Passing Parameters to Applets, get Document Base() and get Code Base(), Applet Context and show Document(), The Applet Stub Interface .

Reference Books *

1. From Complete Reference, "The Complete Reference" 7th edition

2. E. Balagururusamy, "Program with JAVA" 4th edition

3.Herbert Schildt, Dale Skrien, "Java Fundamentals A Comprehensive Introduction" McGraw Hill

4. The JAVA tutorials, 4th Edition by SUN Microsystems

Course Outcomes**

After completion of the course student will be able to

- 1. Use fundamentals of class, objects, methods, operators, constructors.
- 2. Write programs using Inheritance, Super class, methods overriding, object class, final key,packages & interfaces in java code.

3. Handling Exceptions fundamentals, exception hierarchy, exception JAVA Programming fundamentals & Multithreaded Programming concepts.

4. Establish Inter thread communication, set thread priorities, solve deadlock , operations of suspend(),resume(), Stop(). Programming for applets.

* Books to be listed as per the format with decreasing level of coverage of syllabus

** Each CO to be written with proper action word and should be assessable and quantifiable

Course Outcomes		Programme Outcomes (POs)											Program Specific Outcomes (PSOs)				
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
CO1	3	3	0	0	0	2	1	0	0	0	0	1	2	0	2		
CO2	3	2	0	0	0	1	1	0	0	0	0	2	2	0	2		
CO3	3	3	0	0	0	1	1	0	0	0	0	3	2	0	2		
CO4	3	2		0	0	1	2	0	0	0	0	3	2	0	2		

22UEC616E								
L:T:P - 3-0-0	Micro Electro Mechanical Systems	Electro Mechanical Systems CIE Marl						
Total Hours/Week: 03		SEE Mar	ks: 50					
	UNIT-I		10 Hrs.					
Introduction to MEMS Tech	hnology: Basic definitions, history and evolut	ion of MEMS	. Feynman's					
vision, microelectronics and	MEMS, microsensors, microactuators and micro	osystems, Type	es of MEMS,					
Applications of MEMS in va	arious disciplines. Commercial MEMS products	•						
Multiphysics-Multiengineeri	ing aspects of MEMS: Introduction to design,	modeling and	l simulation,					
optimization, fabrication, rel	liability and packaging of MEMS.							
Scaling issues in microsyste	ems, examples and numerical problems based or	n scaling laws.						
	UNIT–II		10 Hrs.					
Design and Working Prine	ciples of MEMS: Transduction principles in r	nicrodomain-	Biomedical					
sensor & biosensor and DN	A sensor, chemical sensor, optical sensor, press	ure sensor, ther	mal sensor.					
Actuation using thermal force, shape-memory alloy, piezoelectric and electrostatic forces. Mechanical								

Credits: 03

sensors and actuators – beams and cantilevers, accelerometers. Electrostatic sensors and actuators – parallel plate capacitors, comb drive sensor and actuator. Optical MEMS – DLP mirror; construction and working.

UNIT-III10 Hrs.Modeling and Simulation of MEMS: Basic modeling elements in mechanical systems, electrical
systems, microfluidic systems, thermal systems, magnetic domain and electrostatic systems.
Measurement tools in microsystems: AFM, SEM and optical inferometry. Characterization methods.
Simulation of MEMS: Need for simulation, FEM, MEMS design and realization tools –
ANSYS/Multiphysics, CoventorWare, COMSOL. AFM as a measurement tool in microsystems. Case
Studies: Microcantilever based sensor, electrothermal actuator, electrostatic actuator.10 Hrs.UNIT-IV10 Hrs.

Microfabrication/Micromachining: Overview of micro fabrication, silicon wafer extraction and cleaning, structural and sacrificial materials in microfabrication, lithography, deposition, doping, etching, Introduction to MEMS fabrication methods like surface, bulk, LIGA and wafer bonding methods.

Reference Books *

SUBJECT CODE:

- 1. G. K. Ananthasuresh, K. J. Vinoy, S. Gopalkrishnan, K. N. Bhat, V. K. Atre, "Micro and smart systems", Wiley, India, 2010.
- 2. N. P. Mahalik, "M EMS", Tata McGraw-Hill, 2007.
- 3. Tai, Ran Hsu,"MEMS and microsystems: design and manufacture", TMH, 2002.
- 4. James J. Allen, "Micro Electro Mechanical System design", CRC Press, Taylor & Francis Group, 2005.
- 5. Chang Liu, "Foundations of MEMS", Pearson education international, 2007. Stephen D. Senturia, "Microsystem design", Springer International edition, 2001.

Course Outcomes**

After completion of the course student will be able to

- 1. Comprehend the fundamentals of MEMS and expose students to the basic scaling laws as applied to micro domain.
- 2. Design and understand the working principle of various microsensing and actuating devices.
- 3. Mathematically model and simulate the various types of micro-systems
- 4. Comprehend the various steps involved in microfabrication and micromachining of micro devices, structures and systems.

Course Outcomes				Pro	ograi	mme	Out	com	es (P	Os)				gram Spe comes (P	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	1	1	0	0	1	0	0	0	2	0	3	3	0
CO2	3	3	3	3	0	0	2	0	0	0	3	0	3	3	0
CO3	3	2	2	2	3	0	0	0	0	0	3	0	3	3	1
CO4	3	2	2	3	0	0	0	0	0	0	3	0	3	3	0

SUBJECT CODE: 22UEC607E		Credits: 03
L:T:P - 3 : 0 : 0	Computer Organization	CIE Marks: 50
Total Hours/Week: 03		SEE Marks: 50
Total Hours/ Week. 05		SEE WAIKS, 50
	UNIT-I	10 Hrs.
Bus Structures, Perform Performance Measurement Machine Instructions an Location and Addresses, M Modes, Assembly Langua	Duters: Computer Types, Functional Units, Basi ance–Processor Clock, Basic Performance t, Historical Perspective. d Programs: Numbers, Arithmetic Operations a <i>A</i> emory Operations, Instructions and Instruction ge, Basic Input and Output Operations, Stacks a neoding of Machine Instructions.	Equation, Clock Rate, and Characters, Memory Sequencing. Addressing
	UNIT-II	10 Hrs.
Exceptions, Direct Memor	tion: Handling Multiple Devices, Controll y Access, Buses, Interrupts – Interrupt Hardware ace Circuits, Standard I/O Interfaces–PCI Bus ar	, Enabling and Disabling
	UNIT–III	10 Hrs.
Considerations, Virtual M Signed Numbers, Design of Arithmetic Cont.: Signed point Numbers and Operat Basic Processing Unit: Fu	Memories–Mapping Functions, Replacement A Gemories, Secondary Storage. Arithmetic: Addi of Fast Adders, Multiplication of Positive Number UNIT–IV , Operand Multiplication, Fast Multiplication, In- tions. undamental Concepts, Execution of a Complete I Control and Microprogrammed Control.	tion And Subtraction of ers 10 Hrs. teger Division, Floating-
Reference Books *	Contor and Microprogrammed Control.	
Hill, 5th Edition, 20022. David A. Patterson, Joh /Software Interface ARI	OVranesic, SafwatZaky, "Computer Organization n L. Hennessy, "Computer Organization and Des M Edition", Elsevier, 4 th Edition, 2009 uterOrganization&Architecture",PHI,7thEdition,	sign – The Hardware
 Have thorough knowled Analyze the different w compute including usin Analyze memory hiera secondary memory con Implement arithmetic 	burse student will be able to dge about structure and performance of a mode ways of communicating with I/O devices and star g interrupt. archy including main memory, cache memor sidering cost/performance. Different Mapping F operations like multiplication, division and a f a complete instruction in the processing unit an	ndard I/O interfaces in a y, virtual memory and functions of cache. analyze the process of

Course Outcomes				Pro	ograi	mme	Out	com	es (P	Os)				gram Spe comes (PS	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	1	1	2	1	2	0	0	0	0	0	0	0	0	0	2
CO2	1	1	2	1	3	0	0	0	0	0	0	0	0	0	3
CO3	1	1	2	1	2	0	0	0	0	0	0	0	0	0	2
CO4	1	1	3	1	3	0	0	0	0	0	0	0	0	0	3

** Each CO to be written with proper action word and should be assessable and quantifiable

	Embedded System	
L:T:P - 3 : 0 : 0		CIE Marks: 50
Total Hours/Week: 03		SEE Marks: 50
	UNIT-I	10 Hrs.
	systems, embedded system vs. general computing	
	em, major application areas including some novel	
	of embedded system, memory, sensors and ac	tuators, communication
interface, Characteristics	and quality attributes of embedded systems. UNIT-II	10 Hrs.
ARM-32 bit Microcontro	ller: Thumb-2 technology and applications of AR	
	in the architecture, debugging support, general p	
	rrupts, stack operation, reset sequence.	urpose registers, special
	UNIT-III	10 Hrs.
Hardware software co-de	esign and program modeling: fundamental issue	
	models in embedded system, hardware softwar	
firmware design and deve	elopment: design approaches, Mixing assembly a	and high level language,
Programming in embedde		
	UNIT-IV	10 Hrs.
	m based embedded system: operating system basic	
	s, process and threads, multiprocessing and multi-	
-	heduling : putting altogether, task communication	on, task synchronization,
device drivers.		
Reference Books *		
1. Shibu K V, "Introduction	to embedded systems", Tata McGraw Hill privat	e limited, 2010.
	ive guide to the ARM CORTEX-M3", Newnes, Sec	
	systems: architecture, programming and desig	
private limited, second		
4. Frank Vahid, Tony Giva	argis, "Embedded system design: A unified ha	rdware/software
introduction", John Wile		•
Course Outcomes**		
-	ourse student will be able to	
	nowledge about embedded systems, major app	
-	d system components like memory, sensors and	
•	nowledge about ARM-32 bit Microcontroller, a	chitecture and other
internal details.		
= =	oplications on IDE environment and programmir	-
4. Explore one opensour	ce RTOS and demonstrate the basic concepts of	RTOS.

Credits: 03

SUBJECT CODE:

22UEC615E

Course Outcomes				Prog	grar	n O	utc	ome	s (P	Os)			Sj Ou	ogra pecif itcon PSO	fic nes
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
C01	3	1	1	0	1	1	0	0	0	0	0	0	0	3	0
CO2	3	2	2	0	1	1	0	0	0	0	0	0	0	3	0
CO3	3	3	3	0	3	3	0	0	0	0	0	0	0	3	0
CO4	3	3	3	0	3	2	0	0	0	0	0	0	0	3	0

SUBJECT CODE : 22UEC617E	Digital Varification	Credits: 02
L:T:P – 2-0-0	Digital Verification	CIE Marks: 50
Total Hours/Week: 02		SEE Marks: 50

UNIT-I	07 Hrs.
Verification Guidelines: The Verification Process, The Verification Methodology M	anual, Basic
Testbench Functionality, Directed Testing, Methodology Basics, Constrained-Random Sti	mulus, What
Should You Randomize, Functional Coverage, Testbench Components, Layered Testbenc	h, Building a
Layered Testbench, Simulation Environment Phases, Maximum Code Reuse, Testbench Pe	erformance.
Procedural Statements and Routines: Procedural Statements, Tasks, Functions, and Voi	id Functions,
Task and Function Overview, Routine Arguments, Returning from a Routine, Local Data S	torage, Time
Values.	
Connecting the Testbench and design: Separating the Testbench and Design, The Interface	
Stimulus Timing, Interface Driving and Sampling, Program Block Considerations, Conr	
Together, Top-Level Scope, Program–Module Interactions, SystemVerilog Assertions, 1	The Ref Port
Direction.	
UNIT–II	07 Hrs.
Basic OOP: Introduction, Think of Nouns, not Vorhs, Your First Class, Whore to Define	
Basic OOP: Introduction, Think of Nouns, not Verbs, Your First Class, Where to Define a	a Class, OOP
Terminology, Creating New Objects, Object Deallocation, Using Objects, Class Metho	
	ods, Defining
Terminology, Creating New Objects, Object Deallocation, Using Objects, Class Metho	nds, Defining ng One Class
Terminology, Creating New Objects, Object Deallocation, Using Objects, Class Metho Methods Outside of the Class, Static Variables vs. Global Variables, Scoping Rules, Usir	nds, Defining ng One Class
Terminology, Creating New Objects, Object Deallocation, Using Objects, Class Methor Methods Outside of the Class, Static Variables vs. Global Variables, Scoping Rules, Usin Inside Another, Understanding Dynamic Objects, Copying Objects, Public vs. Local, Strayin Building a Testbench. Randomization: Introduction, What to Randomize, Randomization in SystemVerilog	ods, Defining ng One Class ng Off Course g, Constraint
Terminology, Creating New Objects, Object Deallocation, Using Objects, Class Methor Methods Outside of the Class, Static Variables vs. Global Variables, Scoping Rules, Usin Inside Another, Understanding Dynamic Objects, Copying Objects, Public vs. Local, Strayin Building a Testbench. Randomization: Introduction, What to Randomize, Randomization in SystemVerilog Details, Solution Probabilities, Controlling Multiple Constraint Blocks, Valid Constra	ods, Defining ng One Class ng Off Course g, Constraint iints, In-Line
Terminology, Creating New Objects, Object Deallocation, Using Objects, Class Methor Methods Outside of the Class, Static Variables vs. Global Variables, Scoping Rules, Usin Inside Another, Understanding Dynamic Objects, Copying Objects, Public vs. Local, Strayin Building a Testbench. Randomization: Introduction, What to Randomize, Randomization in SystemVerilog Details, Solution Probabilities, Controlling Multiple Constraint Blocks, Valid Constra Constraints, The pre_randomize and post_randomize Functions, Random Number	ods, Defining ng One Class ng Off Course g, Constraint ints, In-Line r Functions,
Terminology, Creating New Objects, Object Deallocation, Using Objects, Class Methor Methods Outside of the Class, Static Variables vs. Global Variables, Scoping Rules, Usin Inside Another, Understanding Dynamic Objects, Copying Objects, Public vs. Local, Strayin Building a Testbench. Randomization: Introduction, What to Randomize, Randomization in SystemVerilog Details, Solution Probabilities, Controlling Multiple Constraint Blocks, Valid Constra Constraints, The pre_randomize and post_randomize Functions, Random Number Constraints Tips and Techniques, Common Randomization Problems, Iterative and Array	ods, Defining ng One Class ng Off Course g, Constraint ints, In-Line r Functions, Constraints,
Terminology, Creating New Objects, Object Deallocation, Using Objects, Class Method Methods Outside of the Class, Static Variables vs. Global Variables, Scoping Rules, Usin Inside Another, Understanding Dynamic Objects, Copying Objects, Public vs. Local, Strayin Building a Testbench. Randomization: Introduction, What to Randomize, Randomization in SystemVerilog Details, Solution Probabilities, Controlling Multiple Constraint Blocks, Valid Constra Constraints, The pre_randomize and post_randomize Functions, Random Number Constraints Tips and Techniques, Common Randomization Problems, Iterative and Array Atomic Stimulus Generation vs. Scenario Generation, Random Control, Random Number	ods, Defining ng One Class ng Off Course g, Constraint ints, In-Line r Functions, Constraints,
Terminology, Creating New Objects, Object Deallocation, Using Objects, Class Method Methods Outside of the Class, Static Variables vs. Global Variables, Scoping Rules, Usin Inside Another, Understanding Dynamic Objects, Copying Objects, Public vs. Local, Strayin Building a Testbench. Randomization: Introduction, What to Randomize, Randomization in SystemVerilog Details, Solution Probabilities, Controlling Multiple Constraint Blocks, Valid Constra Constraints, The pre_randomize and post_randomize Functions, Random Number Constraints Tips and Techniques, Common Randomization Problems, Iterative and Array Atomic Stimulus Generation vs. Scenario Generation, Random Control, Random Number Random Device Configuration.	ods, Defining ng One Class ng Off Course , Constraint ints, In-Line r Functions, Constraints, Generators,
Terminology, Creating New Objects, Object Deallocation, Using Objects, Class Method Methods Outside of the Class, Static Variables vs. Global Variables, Scoping Rules, Usin Inside Another, Understanding Dynamic Objects, Copying Objects, Public vs. Local, Strayin Building a Testbench. Randomization: Introduction, What to Randomize, Randomization in SystemVerilog Details, Solution Probabilities, Controlling Multiple Constraint Blocks, Valid Constra Constraints, The pre_randomize and post_randomize Functions, Random Number Constraints Tips and Techniques, Common Randomization Problems, Iterative and Array Atomic Stimulus Generation vs. Scenario Generation, Random Control, Random Number	ods, Defining ng One Class ng Off Course g, Constraint ints, In-Line r Functions, Constraints, Generators, Interprocess

 Transactor, environment class.

 UNIT–III
 07 Hrs.

 UVM Introduction: A Conventional Testbench for the TinyALU, SystemVerilog Interfaces and Bus

Functional Models, Static Methods and Variables, Parameterized Class Definitions, The Factory Pattern, An Object-Oriented Testbench, UVM Tests, UVM Components, UVM Environments, A New Paradigm, Talking to Multiple Objects

07 Hrs.

UVM Contd..:Using Analysis Ports in a Testbench, Interthread Communication, Put and Get Ports in Action, UVM Reporting, Class Hierarchies and Deep Operations, UVM Transactions, UVM Agents,UVM Sequences, onward with the UVM.

UNIT-IV

Reference Books *

1. Chris Spear and Greg Tumbush "SystemVerilog for Verification: A Guide to Learning the Testbench Language Features" Third Edition, Springer, 2012

- 2. Ray Salemi "<u>The UVM Primer: A Step-by-Step Introduction to the Universal Verification</u> <u>Methodology</u>"Boston Light Press; First Edition, 2013
- 3. Donald Thomas "Logic Design and Verification Using Systemverilog" Createspace Independent Pub, 2016
- Mark A. Azadpour "SystemVerilog for Design and Verification using UVM" 2015 <u>Ashok B. Mehta</u> "ASIC/SoC Functional Design Verification: A Comprehensive Guide to Technologies and Methodologies" Springer, 2017

Course Outcomes**

After completion of the course student will be able to

- **1.** Appreciate the importance and scope of digital verification and UVM.
- 2. Write testbench using SystemVerilog and OOPs concept.
- 3. Write testbench using on SystemVerilog and UVM.
- 4. Write automated testbench using SystemVerilogand UVM.
- * Books to be listed as per the format with decreasing level of coverage of syllabus

** Each CO to be written with proper action word and should be assessable and quantifiable
--

Course Outcomes				Pro	ograi	mme	Out	com	es (P	Os)				gram Spe comes (P	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	1	0	1	2	3	0	0	0	0	0	0	0	0	3	0
CO2	1	0	1	2	3	0	0	0	0	0	0	0	0	3	0
CO3	1	0	1	2	3	0	0	0	0	0	0	0	0	3	0
CO4	1	0	1	2	3	0	0	0	0	0	0	0	0	3	0

SUBJECT CODE: Open Elective	Fiber Optics and Network	Credits: 03
L:T:P - 3-0-0	-	CIE Marks: 50
Total Hours/Week: 03		SEE Marks: 50

This course will enable students to learn:

- 1. The fundamental principles of optical fiber communication, including different modes of light propagation, transmission characteristics, and the factors contributing to losses in optical fibers.
- 2. Optical sources and detectors, their characteristics, fiber connectors, and the various techniques used for splicing fibers.
- 3. The operation and configuration of receivers, as well as various techniques for coherent transmission and the factors affecting system performance in optical communication systems.
- 4. Optical network components and the infrastructure of SONET/SDH (Synchronous Optical Network/Synchronous Digital Hierarchy).

UNIT-Ixx Hrs.Overview of optical fiber communication: Optical Spectral Bands, Basic Principles, Fiber Modes
and Configuration, Step-index and Graded index structures, Fiber Materials, Fiber Fabrication.Signal degradation in optical fibers: Attenuation, Signal Distortion in Optical Waveguides,
Characteristics of Single Mode Fibers.

UNIT-IIxx Hrs.Optical sources: Characteristics of Light Sources for Communication, LED and LASER diode
sources. Power launching and coupling: Source to Fiber Power Launching, Lensing Schemes for
Coupling Improvement, Fiber-to-Fiber joints, LED Coupling to Single Mode Fibers, Fiber Splicing,
Optical Fiber Connectors. Photo detectors: Physical Principles of Photo Diodes, PIN Photodiode,
Avalanche Photo Diode

UNIT-IIIxx Hrs.Optical receiver operation: Fundamental Receiver Operation, Digital Receiver Performance
Calculation, Analog Receivers. Digital links: Point-to-Point Links, Power Penalties. Analog Links:
Overview of Analog Links, Carrier –to-Noise Ratio, Multichannel Transmission Techniques, RF over
Fiber, Radio –over –Fiber Links

UNIT-IVxx Hrs.Optical Network Components: Principle and Operation of couplers, Isolators, Circulators, Fabry PerotFilters, Mach-Zehnder Interferometer & EDFA. Optical Networks : Client layers of SONET/SDHSONET/SDH layers, SONET/SDH frame structure, SONET/SDH physical layer, Elements ofSONET/SDH infrastructure,

Reference Books *

- 1) Gerd Keiser, "Optical Fiber Communications", MGH, 4th Edition, 2008
- 2) John M. Senior, "Optical Fiber Communications", Pearson, 2nd Edition, 2006
- 3) Rajiv Ramaswami, Kumar N Sivarajan "Optical Networks", Elsevier, 2nd Edition, 2004

Course Outcomes**

A student who successfully completes this course should be able to

1. Demonstrate an understanding of different modes of light propagation, transmission characteristics, and the factors contributing to losses in optical fibers.

- 2. Characterize optical sources, detectors, connectors, and various fiber splicing techniques, with a clear understanding of their roles in optical communication systems.
- 3. Explain the operation and configuration of receivers, evaluate coherent transmission techniques, and assess performance factors impacting optical communication systems.
- **4.** Describe optical networking and SONET/SDH infrastructure, including the components and operation of SONET/SDH systems for efficient data transmission.

Course Outcomes			Р	rogi	ram	ime	Ou	tcon	nes (POs)			Outo	cific	es
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1: Demonstrate an understanding of different modes of light propagation, transmission characteristics, and the factors contributing to losses in optical fibers.	3	3	2	2	1	1	1	0	0	0	0	0	3	0	0
CO2: Characterize optical sources, detectors, connectors, and various fiber splicing techniques, with a clear understanding of their roles in optical communication systems	3	2	2	2	1	1	1	0	0	0	0	0	3	0	0
CO3: 3. Explain the operation and configuration of receivers, evaluate coherent transmission techniques, and assess performance factors impacting optical communication systems.	3	3	2	2	1	1	1	0	0	0	0	0	3	0	0
CO4: 4. Describe optical networking and SONET/SDH infrastructure, including the components and operation of SONET/SDH systems for efficient data transmission	3	3	3	2	2	1	2	0	0	0	0	0	3	0	0

SUBJECT CODE:		Credit	s: 03
Open Elective			
	Sensor Technology		
L:T:P-3-0-0		CIE Mar	ks: 50
Total Hours/Week: 03]	SEE Mar	ks: 50
	UNIT-I		xx Hrs.
Sensor Fundamentals: In	ntroduction, Definition, Types, and Sensor Cha	racteristics	
Principles of Sensing : Ca	apacitive, Magnetic, Inductive, Resistive, Piezo	electric,	
Piezoresistance, Pyroelect	tric, Hall effect.		
	ircuits: Input Characteristics of Interface Circu	its, Amplifiers,	
8	O Converters, Bridge Circuits, Data Transmitter	· •	ow
power sensors			
	UNIT–II		xx Hrs.
Overview of Sensor Mat	terials: Sensor materials and material propertie	s, Surface Proce	ssing of
materials for development	t of Sensors.		U
Sensor Technologies: Mi	icro technology, Micro-Electro-Mechanical Sys	stems Technolo	TU
		stems reemond	<u></u> Ξ Υ ,
Nanotechnology			gy,
	splacement Sensing, level & Velocity Sensor		
Sensor Applications: Di			
Sensor Applications: Di	splacement Sensing, level & Velocity Sensor		

classification. Resistive (potentiometric type): Forms, material, resolution, accuracy, sensitivity. **Strain gauge:** Theory, type, materials, design consideration, sensitivity, gauge factor, variation with temperature,

Capacitive sensors: Stretched diaphragm type: microphone, response characteristics. Piezoelectric element: piezoelectric effect

Case Study: Piezoelectric and Capacitive Pressure Sensors, Cantilever based DNA Sensor, CNT based Pressure Sensor.

UNIT-IVxx Hrs.Interfacing: Communication Basics, parallel, serial and wireless communication, Basic protocol
concept, communication protocols, USB interface, Processor interfacing basics, Controller and
computer based control implementations. Introduction to wireless sensor network and wireless
network protocols

Reference Books *

- 1. Jacob Fraden, "Handbook of Modern Sensors: Physical Design & Applications", AIP Press, Springer.
- 2. D. Patranabis, "Sensors & Transducers", PHI Publication New Delhi.
- 3. Frank Vahid, Tony Givargis, "Embedded system Design", John Wieley & Sons, Inc, 2002
- 4. H.K.P. Neubert, "Instrument transducers", Oxford University press.
- 5. E.A. Doebelin, "Measurement systems: application & design", Mc Graw Hill

Course Outcomes**

After completion of the course student will be able to

- 5. Use concepts for converting a physical parameter into an electrical quantity
- 6. Identify appropriate sensor materials and technology while designing sensors
- 7. Comprehend working principle of mechanical, strain gauge and capacitive sensors.

- 8. Set up sensor data acquisition and communication strategies
- 9. Suggest sensor performance improvement methodologies

Course Outcomes	Programme Outcomes (POs)												Program Specific Outcomes (PSOs)			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	3	2			2		2				2	3	1		
CO2	3	1	2			3			2			3	3	2		
CO3	3	3	3		2	2				1		2	3	2		
CO4	3	3	1	2	3	3	3	3		1	2	3	3	3		

SUBJECT CODE:	Image Processing (Department Open Elective)	Credits: 03
Open Elective		
L:T:P - 3: 0: 0		CIEMarks:50
Total Hours/Week: 03		SEEMarks:50

Course Objectives:

- 1. To provide the basic knowledge on image processing concepts.
- 2. To develop the ability to apprehend and implement various image processing algorithms.
- 3. To understand various image processing steps and their applications in real time

4. To facilitate the students to comprehend the contextual need pertaining to various image processing applications.

UNIT-I

10 Hrs.

Introduction- Digital Image, its Representation & point operations: Image Representation and Image Processing Paradigm - Elements of digital image processing, Image model. Sampling and quantization-Relationships between pixels- Connectivity, Distance Measures between pixels, Color image (overview, various color models)-Various image formats bmp, jpeg, tiff, png, gif, etc. Noise in Images Sources, types. Arithmetic operations, Logical operations, Spatial operations Single pixel, neighbour hood, geometric-Contrast Stretching-Intensity slicing-Bit plane slicing Power Law transforms.

UNIT–	10
Π	Hrs.

Image Enhancement: Spatial and Frequency domain-Histogram processing-Spatial filtering-Smoothening spatial filters, Sharpening spatial filters; Frequency filtering-Smoothening frequency filters. Selective filtering.

Image Restoration: Noise models - Degradation models-Methods to estimate the degradation-Image deblurring Restoration in the presence of noise only spatial filtering-Periodic noise reduction by frequency domain filtering-Inverse filtering-Wiener Filtering.

UNIT-10IIIHrs.Feature Extraction: Region of interest (ROI) selection - Feature extraction: Histogram based features- Intensity features-Color, Shape features-Contour extraction and representation-Homogenous region

- Intensity features-Color, Shape features-Contour extraction and representation-Homogenous regiextraction and representation-Texture descriptors.

Image Segmentation: Discontinuity detection-Edge linking and boundary detection. Thresholding-Region oriented segmentation- Histogram based segmentation. Object recognition based on shape descriptors.

UNIT–								
IV	Hrs.							
Image Coding and Compression: Lossless compression versus lossy compression-Measures of the								

compression efficiency- Huffmann coding, Bit plane coding, Arithmetic coding. Wavelet Transform in image processing: Wavelet Transform in one dimensions, Wavelet transforms in two dimensions. Fast Wavelet Transform , Other Applications of Wavelet in image processing.

Reference Books *

Author/s last Name, initial (Year), Book Title (edition), Publisher

1. Rafael C. Gonzalez and Richard E. Woods, Digital Image Processing, 4th Edition, Pearson, 2018. 2 William

2. William

2. K. Pratt, Digital Image Processing, 4th Edition, John Wiley, 2007.

3. Fundamentals of Digital Image Processing, Jain A.K., PHI, 1997

4. Insight into wavelets - From theory to practice, K. P. Soman and K. I. Ramchandran, PHI ,2005, Second Edition.

5. Rafael C. Gonzalez, "Digital Image processing using MATLAB", Richard E. Woods and Steven Low price Edition, Pearson Education Asia, India, 2nd Edition, 2004.

Course Outcomes**

After completion of the course student will be able to

1. Ascertain and describe the basics of image processing concepts through mathematical interpretation and operations.

2. Acquire the knowledge of various image enhancement techniques involved.

- 3. Demonstrate image restoration process and its respective filters required.
- 4. Experiment the various image segmentation and feature extraction operations.

5. Design the various image coding and compression procedures and illustrate the wavelet transform in images with its applications.

*Books to be listed as per the format with decreasing level of coverage of syllabus Course Articulation Matrix

Course Outcomes	Programme Outcomes (POs)												Program Specific Outcomes (PSOs)			
	1	2	3	4	5	6	7	8	9	1 0	1 1	1 2	1	2	3	
CO1	3	3	3	2	2	1	0	1	1	1	0	1	3	0	0	
CO2	3	3	3	2	2	1	0	1	1	1	0	1	3	0	0	
CO3	3	3	3	2	2	1	0	1	1	1	0	1	3	0	0	
CO4	3	3	3	2	2	1	0	1	1	1	0	1	3	0	0	
CO5	3	3	3	2	2	1	0	1	1	1	0	1	3	0	0	

Assignment:

Students are required to develop programs

using Matlab. List of Programs

- 1. Write program to read and display digital image using MATLAB or SCILAB
 - a. Become familiar with SCILAB/MATLAB Basic commands
 - b. Read and display image in SCILAB/MATLAB
 - c. Resize given image
 - d. Convert given colour image into gray-scale image
 - e. Convert given colour/gray-scale image into black & white image
 - f. Draw image profile
 - g. Separate colour image in three R G & B planes
 - h. Create colour image using R, G and B three separate planes
 - i. Write given 2-D data in image file
- 2. To write and execute image processing programs using point processing method
 - a. Obtain Negative image
 - b. Obtain Flip image
 - c. Thresholding
 - d. Contrast stretching
- 3. To write and execute programs for image arithmetic operations
 - a. Addition of two images
 - b. Subtract one image from other image
 - c. Calculate mean value of image
 - d. Different Brightness by changing mean value
- 4. To write and execute programs for image logical operations
 - a. AND operation between two images
 - b. OR operation between two images
 - c. Calculate intersection of two images
 - d. Water Marking using EX-OR operation
 - e. NOT operation (Negative image)
- 5. To write a program for histogram calculation and equalization using
 - a. Standard MATLAB function
 - b. Program without using standard MATLAB functions
- 6. To write and execute program for geometric transformation of image
 - a. Translation b. Scaling c. Rotation d. Shrinking e. Zooming
- To understand various image noise models and to write programs for a. image restoration b. Remove Salt and Pepper Noise c. Minimize Gaussian noise d. Median filter and Weiner filter
- 8. Write a program in MATLAB/SCILAB for edge detection using different edge detection mask

9. To write and execute program for wavelet transform on given image and perform inverse wavelet transform to reconstruct image.